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Common Definitions of the Integers

1st Definition

Z is the inductive type generated by

0Z : Z,

pos : N→ Z,

neg : N→ Z.

In other words, Z ' N + 1 + N.

Problem: explosion of case distinctions.

2nd Definition

Zq :≡ set quotient of N× N by (m, n) ∼ (k , l)⇔ m + l = k + n.

Problem: can only eliminate into sets.
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Common Definitions of the Integers

Recall: the integers are initial in the category of pointed sets with an
automorphism.

3rd Definition

Let Za be the higher inductive type generated by

0Za : Za

succZa : Za → Za,

predZa
: Za → Za,

secZa : predZa
◦ succZa ∼ id ,

retZa : succZa ◦ predZa
∼ id ,

isSet(Za)

Problem: again, can only eliminate into sets.
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Common Definitions of the Integers

Paolo Capriotti: integers as a pointed type with an autoequivalence.

4th Definition

Let Zh be the higher inductive type generated by:

0Zh
: Zh

succZh
: Zh → Zh,

predZh
: Zh → Zh,

secZh
: predZh

◦ succZh
∼ id ,

retZh
: succZh

◦ predZh
∼ id ,

cohZh
: succZh

◦ secZh
∼ retZh

◦ succZh
.

Problem: Does this HIT really represent the integers?
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Integers as HIT

Altenkirch & Scoccola [1] tried to prove that Z ' Zh.
Problem: path algebra is too complicated due to 2-path constructor
cohZh

.

Solutions:

1 Cavallo [3], Altenkirch & Scoccolla [1]: Use bi-invertible maps rather
than half-adjoint equivalences.

2 Use a different induction principle.
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An Induction Principle for Zh

Dependent UMP of Z (Rijke [4])

Consider a type family E : Z→ U equipped with a point e0 : E (0Z) and a
family of bi-invertible maps

sE :
∏
z:Z

E (z) ' E (succZ(z))

Then, there is a dependent function f :
∏

z:Z E (z) such that

f (0Z) = e0 and,

for every z : Z, f (succZ(z)) = sE (z , f (z))

Idea: use this induction principle with half-adjoint equivalences.
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What Justifies an Induction Principle?

Given a suitable notion of category, the induction principle should be

weak enough to follow from initiality, and

strong enough to pin the HIT down.

In other words, we want inductivity to be equivalent to initiality.

General strategy: Awodey, Gambino & Sojakova [2], Sojakova [5] [6].
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Näıve Categories

Definition

A näıve category C in universe U consists of the following data:

a type of objects, C0 : U ,
a type family of morphisms, A,B : C0 ` HomC(A,B) : U ,
a composition operation,

f : HomC(A,B), g : HomC(B,C ) ` g ◦ f : HomC(A,C )

identity morphisms, 1A : HomC(A,A),

for each f : HomC(A,B), “unitors”

ρf : f ◦ 1A = f and λf : 1B ◦ f = f ,

for each composable triple of morphisms f , g , h, an “associator”

αf ,g ,h : h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
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Homotopy Initiality
Let A be an object in a näıve category C.

Definition

Following [2], we say that A is homotopy initial in C when the following
type is inhabited:

ishinit(A) :≡
∏
B:C0

isContr(HomC(A,B)).

Lemma

The previous type is equivalent to the product of

hasrec(A) :≡
∏
B:C0

HomC(A,B)

and
hasrecunique(A) :≡

∏
B:C0

isProp(HomC(A,B))
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The Näıve Category of Z-Algebras

Definition

A Z-algebra (in universe U) is a pointed type with a half-adjoint
autoequivalence.

ZAlg :≡
∑
A:U

A× (A ' A).

Example

There is a canonical Z-algebra structure on Z given by 0Z and the
autoequivalence defined by:

succZ : Z→ Z,

predZ : Z→ Z,

secZ : predZ ◦ succZ ∼ id ,

retZ : succZ ◦ predZ ∼ id ,

cohZ : succZ ◦ secZ ∼ retZ ◦ succZ.
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The Näıve Category of Z-Algebras

Notation

Given a Z-algebra A, we shall typically denote its components as follows:

Underlying type:
I A : U

Point:
I a0 : A

Autoequivalence:
I sA : A→ A
I pA : A→ A
I σA : pA ◦ sA ∼ idA

I σA : sA ◦ pA ∼ idA

I τA : sA ◦ σA ∼ ρA ◦ sA
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The Näıve Category of Z-Algebras

Definition

A Z-algebra morphism from A : ZAlg to B : ZAlg is a pointed,
equivalence-preserving map.

HomZAlg(A,B) :≡
∑

f :A→B

(f (a0) = b0)× (f ◦ sA ∼ sB ◦ f ).

Example (Identity Morphism)

For any A : ZAlg, there is a morphism 1A : HomZAlg(A,A) given by

idA : A→ A

refla0 : a0 = a0

λa. refl sA(a) : idA ◦ sA ∼ sA ◦ idA
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The Näıve Category of Z-Algebras

Notation

Given a Z-Algebra morphism f : HomZAlg(A,B), we shall typically denote
its components as follows:

f : A→ B

f0 : f (a0) = b0

fs : fs ◦ sA ∼ sB ◦ fs
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The Näıve Category of Z-Algebras

Definition (Composition)

Let f : HomZAlg(A,B) and g : HomZAlg(B,C). Their composite
g ◦ f : HomZAlg(A,C) is defined as the following triple:

g ◦ f : A→ C

g(f0) · g0 : g(f (a0)) = c0

(g ◦ fs) · (f ◦ gs) : f ◦ sA ∼ sC ◦ f .

Lemma
1 Composition of Z-algebras is associative

2 Identity Z-algebra morphisms satisfy left and right unit laws with
respect to composition.
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Fibered Z-Algebras

Recall the dependent UMP of Z:

Consider a type family E : Z→ U equipped with a point e0 : E (0Z) and a
family of equivalences

sE :
∏
z:Z

E (z) ' E (succZ(z))

Then, there is a dependent function f :
∏

z:Z E (z) such that

f (0Z) = e0 and,

for every z : Z, f (succZ(z)) = sE (z , f (z))
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Fibered Z-Algebras

Definition

A fibered Z-algebra over A is a type family E : A→ U together with

a point e0 : E (a0) over a0, and

a fiberwise equivalence sE :
∏

a:A E (a)→ E (sA(a)) over sA.

We denote the type of all such algebras by FibZAlg(A).

Example

Every Z-algebra B :≡ (B, b0, (sB , iB)) induces a constant fibered Z-algebra
over A given by

E :≡ λa.B : A→ U ,
e0 :≡ b0 : B,

sE :≡ λa. sB :
∏

a:A B → B,

iE :≡ λa. iB :
∏

a:A isequiv(sB),
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Fibered Z-Algebra Sections

Recall the dependent UMP of Z:

Consider a type family E : Z→ U equipped with a point e0 : E (0Z) and a
family of equivalences

sE :
∏
z:Z

E (z) ' E (succZ(z))

Then, there is a dependent function f :
∏

z:Z E (z) such that

f (0Z) = e0 and,

for every z : Z, f (succZ(z)) = sE (z , f (z))
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Fibered Z-Algebra Sections

Definition

A section of a fibered Z-algebra E over A is a pointed,
equivalence-preserving dependent function f :

∏
a:A E (a).

SecZAlg(A,E) :≡
∑

f :
∏

a:A E(a)

(f (a0) = e0)×

(∏
a:A

f (sA(a)) = sE (a, f (a))

)

Remark

If E is the constant fibered Z-algebra over A induced Z-algebra B, then

SecZAlg(A,E) ≡ HomZAlg(A,B)
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Inductive Z-Algebras

Definition

A is inductive if every fibered Z-algebra over it has a section.

isind(A) :≡
∏

E:FibZAlg(A)

SecZAlg(A,E)

Example

The higher inductive type Zh is, by definition, an inductive Z-algebra.
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Roadmap

Our ultimate goal is:

Theorem

Z =ZAlg Zh.

It suffices to show:

1 For every A : ZAlg, isind(A) ' ishinit(A).

2 ishinit(Z).

3 There is a unique homotopy initial Z-algebra.

For (1), in turn, it suffices to show:

3 For every A : ZAlg, isind(A)↔ ishinit(A),

4 For every A : ZAlg, isind(A) and ishinit(A) are propositions.

Fernando Larrain (CMU) A Higher Inductive Presentation of the Ints. February 26, 2021 20 / 38



Roadmap

Our ultimate goal is:

Theorem

Z =ZAlg Zh.

It suffices to show:

1 For every A : ZAlg, isind(A) ' ishinit(A).

2 ishinit(Z).

3 There is a unique homotopy initial Z-algebra.

For (1), in turn, it suffices to show:

3 For every A : ZAlg, isind(A)↔ ishinit(A),

4 For every A : ZAlg, isind(A) and ishinit(A) are propositions.

Fernando Larrain (CMU) A Higher Inductive Presentation of the Ints. February 26, 2021 20 / 38



Roadmap

Our ultimate goal is:

Theorem

Z =ZAlg Zh.

It suffices to show:

1 For every A : ZAlg, isind(A) ' ishinit(A).

2 ishinit(Z).

3 There is a unique homotopy initial Z-algebra.

For (1), in turn, it suffices to show:

3 For every A : ZAlg, isind(A)↔ ishinit(A),

4 For every A : ZAlg, isind(A) and ishinit(A) are propositions.

Fernando Larrain (CMU) A Higher Inductive Presentation of the Ints. February 26, 2021 20 / 38



Identity Type of Sections

The previous claims will require comparisons of sections or morphisms, so
we begin by characterizing their identity types “extensionally.”

Lemma

Consider any fibered Z-algebra E over A. Let f and g be two sections of
E. Then,

(f = g) ' SecId(f, g),

where SecId(f, g) is the type of triples (H,H0,Hs) such that

H : f ∼ g

H0 : H(a0) = f0 · g−10

Hs :
∏

a:AH(sA(a)) = fs(a) · sE (a,H(a)) · gs(a)−1
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Proof.

Fix f : SecZAlg(A,E). The relation SecId is reflexive, so there is a map∏
g:SecZAlg(A,E)

f = g→ SecId(f, g).

To prove that it is a fiberwise equivalence, it suffices to show that∑
g:SecZAlg(A,E)

SecId(f, g)

is contractible. Pairing the first components of the summands, we obtain
the type ∑(

g :
∏
a:A

E (a)

)
, f ∼ g ,

which is contractible. The same thing happens with the other summands.
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Identity Type of Morphisms

Corollary

Consider any two Z-algebras A and B. Let f and g be two morphisms
from A to B. Then,

(f = g) ' HomId(f, g),

where HomId(f, g) is the type of triples (H,H0,Hs) such that

H : f ∼ g

H0 : H(a0) = f0 · g−10

Hs :
∏

a:AH(sA(a)) = fs(a) · sB(H(a)) · gs(a)−1
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Uniqueness Principle for Inductive Z-Algebras

Lemma

isind(A)→
∏

E:FibZAlg(A)

isProp(SecZAlg(A,E)).

Proof.

Suppose A is inductive. Fix two arbitrary sections f and g of E. SecId(f, g)
is precisely the type of sections of the following fibered Z-algebra:

underlying type family: f ∼ g ,

point: f0 · g−10 ,

fiberwise equivalence: for each a : A,

f (a) = g(a) → f (sA(a)) = g(sA(a))
q 7→ fs(a) · sE (a, q) · gs(a)−1,

so the conclusion follows by A-induction.
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Inductivity Is a Property

Theorem

For every A : ZAlg,
isProp(isind(A)).

Proof.

Fix A. We may assume that it is inductive.
Recall that

isind(A) ≡
∏

E:FibZAlg(A)

SecZAlg(A,E).

Since propositions are closed under
∏

, the conclusion follows from the
Uniqueness Principle.
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Inductivity Implies Initiality

Theorem

Every inductive Z-algebra is homotopy initial.

Proof.

Suppose A is inductive and fix an arbitrary Z-algebra B.

1 Morphism into A: by A-induction into constant fibered Z-algebra
induced by B.

2 Uniqueness: by Uniqueness Principle for inductive Z-algebras.

Corollary

Zh is homotopy initial.
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Initiality Implies Inductivity

Theorem

Every homotopy initial Z-algebra is inductive.

We need the following lemma:

Lemma

Every E : FibZAlg(A) has an associated “total Z-algebra” Ẽ given by

underlying type:
∑

a:A E (a)

point: (a0, e0)

autoequivalence: (a, e) 7→ (sA(a), sE (a, e))

and a projection morphism π1 : HomZAlg(Ẽ,A).
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Initiality Implies Inductivity

Proof.

Suppose A is homotopy initial and consider an arbitrary E : FibZAlg(A).
Let Ẽ be its associated Z-algebra.

1 Get a morphism f :≡ (f , f0, fs) into Ẽ by A-recursion. Notice that

pr2 ◦ f :
∏
a:A

E (pr1(f (a)))

2 Get a path π1 ◦ f = 1A by the uniqueness principle of A.

3 Transport pr2 ◦ f along this path to obtain a section of E.

Corollary

For every A : ZAlg,
isind(A) ' ishinit(A).
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Roadmap

Ultimate goal is:

Theorem

Z =ZAlg Zh.

It suffices to show:

1 For every A : ZAlg, isind(A) ' ishinit(A). X
2 ishinit(Z).

3 There is a unique homotopy initial Z-algebra.
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Uniqueness of Homotopy Initial Z-Algebras
Paths between Z-algebras are “equivalence morphisms”:

Lemma

For any two Z-algebras A :≡ (A, a0, sA) and B :≡ (B, b0, sB), it is the case
that

(A = B) '

( ∑
e:A'B

(e(a0) = b0)× (e ◦ sA = sB ◦ e))

)
,

where we have identified e with its underlying map.

Proof.

Essentially by Univalence.

Corollary

isProp

 ∑
A:ZAlg

ishinit(A)

 .
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Roadmap

Ultimate goal:

Theorem

Z =ZAlg Zh.

It suffices to show:

1 For every A : ZAlg, isind(A) ' ishinit(A). X
2 ishinit(Z).

3 There is a unique homotopy initial Z-algebra. X
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Initiality of Z

Theorem

Z is homotopy initial.

Proof.

Mechanical except for theorem discussed in next slide.

Corollary

Z = Zh
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Propositional Computation Rules for Other Constructors

The alternative induction principle for Zh only specifies the behavior
of the dependent eliminator on 0h and succh.

More generally, Z-algebra morphisms only carry witnesses of
commutativity with the underlying maps of the relevant
autoequivalences.

It is not true in general that we may ignore preservation of properties
(see Capriotti’s counterexample in [1]).

However, we can prove that, in this particular case, we may. The
missing information is fully determined by the existing data and can
thus be recovered if necessary.
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Theorem

For every (sA, pA, σA, ρA, τA) : A1 ' A2, (sB , pB , σB , ρB , τB) : B1 ' B2,
f1 : A1 → B1, f2 : A2 → B2 and fs : f2 ◦ sA ∼ sB ◦ f1, the type of
quadruples with components

fp : f1 ◦ pA ∼ pB ◦ f2,

fσ : f1 ◦ σA ∼ topσ · (σB ◦ f1),

fρ : f2 ◦ ρA ∼ topρ · (ρB ◦ f2),

fτ : (f2 ◦ τA) ·r fs) · back ∼ front · (topτ ·l (τB ◦ f1),

is contractible.

Informally: the corresponding “functor” into the category of Z-algebras is
fully faithful.

Proof.

Apply equivalence and homotopy induction. The resulting
∑

-type
contains several summands that are easily seen to be contractible
(essentially, paths with a free endpoint).
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Additional Results

Some of the ideas that we have presented apply to any näıve category C
with finite limits.

Definition

An object A in C is inductive if every morphism into it has a section, i.e.
if the type

isind(A) :≡
∏
B:C0

∏
f :HomC(B,A)

∑
g :HomC(A,B)

f ◦ g = 1A

is inhabited.

The following is a standard fact in classical category theory:

Theorem

For every A : C0, isind(A)↔ ishinit(A).
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Additional Results

We can generalize it slightly as follows:

Theorem (Uniqueness Principle for Inductive Objects)

If A : C0 is inductive, then, for any B : C0 and f : HomC(B,A), the type∑
g :HomC(A,B)

f ◦ g = 1A

is a proposition.

Corollary

For every A : C0,
isind(A) ' ishinit(A).
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