Nominal Sets and the Schanuel Topos

Fernando Larrain

September 28, 2022

1 Nominal Sets

1.1 Group Actions

Let G be a group. A G-set is a functor over G or, equivalently, a set X equipped with a left action $\mu: G \times X \to X$ of G. An equivariant map between G-sets is a natural transformation between them or, equivalently, a function between their underlying sets that respects the action of G.

The category $[G, \mathbf{Set}]$ of *G*-sets and equivariant maps is an elementary topos because it is a category of presheaves. Furthermore, it is boolean, so it supports classical higher order logic. The subobject classifier is given by the discrete *G*-set $\mathbb{B} = \{\top, \bot\}$ (a *G*-set (X, μ) is discrete when $\mu = \pi_2$).

The exponentials in $[G, \mathbf{Set}]$ are the exponentials in \mathbf{Set} , where the action of $g \in G$ on a function ϕ between G-sets is given by

$$(g \cdot \phi)(x) = g \cdot (\phi(g^{-1} \cdot x)).$$

In the particular case of powersets, this amounts to mapping subsets S of a G-set X to their image $g \cdot S = \{g \cdot x \mid x \in X\}$. If S is closed under the action of G, we say S is *equivariant*. These subsets are important because they correspond precisely to the subobjects of X. Also, quotients of G-sets by equivariant equivalence relations give rise to quotients in $[G, \mathbf{Set}]$ in the obvious way.

1.2 Permutation Groups

Let A be a set. Then, Sym A denotes the symmetric group on A and Perm A, the subgroup of Sym A of finite permutations. A permutation π is said to be finite if $\{a \in A \mid \pi(a) \neq a\}$ is.

Given $a, a' \in A$, we define (a a') as the finite permutation that swaps a and a' and leaves everything else unchanged. Such a permutation is called a *transposition*. Transpositions generate Perm A. In fact, for any finite permutation π , we can choose its factors (a a') so that

$$\pi(a) \neq a \neq a' \neq \pi(a').$$

i.e. so that they are neither degenerate nor redundant.

1.3 Nominal Sets

Fix a countably infinite set \mathbb{A} . The elements of \mathbb{A} will be called *atomic names*.

Given a Perm A-set X, we say that $A \subseteq A$ supports $x \in X$ if every permutation that fixes each element in A also fixes x:

$$(\forall a \in A)\pi(a) = a \implies \pi(x) = x.$$

In terms of transpositions, A supports x if

$$(\forall a_1, a_2 \in \mathbb{A} - A)(a_1 a_2) \cdot x = x.$$

A fundamental property of the set of finite supports of x is that it is closed under binary intersections. In other words, given two finite sets A_1 and A_2 , if both support x, then so does $A_1 \cap A_2$. To see this, fix $a_1, a_2 \in \mathbb{A} - (A_1 \cap A_2)$. We want to show that $(a_1 a_2) \cdot x = x$. Notice that a_1 and a_2 might be in A_1 or in A_2 , so we cannot use our hypotheses directly. However, since A_1 and A_2 are finite, we can find an "interpolant" a_3 distinct from a_1 and a_2 that is neither in A_1 nor A_2 to factor the transposition as $(a_1 a_2) = (a_1 a_3) \circ (a_2 a_3) \circ (a_1 a_3)$ (this presupposes that $a_1 \neq a_2$, but if that is not the case, we are done anyway). That the goal follows from the hypotheses is now evident.

A nominal set is a Perm A-set whose every element has finite support. For X a nominal set and $x \in X$, we let $\operatorname{supp}_X(x)$ be the least finite $A \subseteq \mathbb{A}$ supporting x (it exists because of the closure property just mentioned). Nom is the full subcategory of [Perm A, Set] spanned by the nominal sets. In fact, it is a coreflective subcategory of [Perm A, Set], i.e. its associated inclusion functor has a right-adjoint given on Perm A-sets X by

$$X_{\rm fs} = \{ x \in X \mid x \text{ is finitely supported} \}.$$

Furthermore, it is a boolean Grothendieck topos, as we show next. For the proof, we shall require a few basic results about nominal sets.

First, for any finite $A \subseteq \mathbb{A}$, $\operatorname{supp}(A) = A$, so the set $\mathcal{P}_f(\mathbb{A})$ of finite subsets of \mathbb{A} is a nominal set.

Second, for any Perm A-set X, the function $\operatorname{supp}_X : X \to \mathcal{P}_f(\mathbb{A})$ is equivariant, because it is definable in the internal logic of [Perm \mathbb{A} , **Set**].

Third, if $f : X \to Y$ is an equivariant function, then it preserves support, i.e. if A supports $x \in X$, then A supports f(x).

1.4 A Category of Contexts and Renamings

Let \mathbb{I} be the category of finite subsets of \mathbb{A} and injections between them, with identities and compositions as in **Set**. We can think of \mathbb{I}^{op} as a category of *(naming) contexts* and *renamings* (contractions excluded).

Proposition 1. There is a functor $I_* : \mathbf{Nom} \to [\mathbb{I}, \mathbf{Set}]$.

Proof. Every nominal set X gives rise to a presheaf F on \mathbb{I}^{op} :

- 1. On contexts $\Gamma \in \mathbb{I}$, we put $F(\Gamma) = \{x \in X \mid \operatorname{supp}(x) \subseteq \Gamma\}$.
- 2. On renamings $\Gamma \xrightarrow{\rho} \Delta$ in \mathbb{I} , we let $F(\rho)(x) = \pi \cdot x$, where $\pi \in \operatorname{Perm} \mathbb{A}$ satisfies $\pi \upharpoonright \Gamma = \rho$.

Notice that every injection $\rho : \Gamma \to \Delta$ in \mathbb{I} can be extended to a finite permutation π on \mathbb{A} , so that $F(\rho)$ is always defined. Indeed, since $\Gamma \cong \operatorname{im} \rho$,

$$\begin{split} |\mathrm{im}\,\rho-\Gamma| &= |\mathrm{im}\,\rho| - |\Gamma\cap\mathrm{im}\,\rho|,\\ &= |\Gamma| - |\Gamma\cap\mathrm{im}\,\rho|,\\ &= |\mathrm{im}\,\rho-\Gamma|, \end{split}$$

so there is a bijection $\rho': (\operatorname{im} \rho - \Gamma) \to (\Gamma - \operatorname{im} \rho)$ and one can set

$$\pi(a) = \begin{cases} \rho(a) & a \in \Gamma, \\ \rho'(a) & a \in \operatorname{im} \rho - \Gamma, \\ a & \operatorname{otherwise} \end{cases}$$

Furthermore, the behavior of $F(\rho)$ does not depend on the choice of extension π . Indeed, if π and π' extend ρ , then $\pi^{-1} \circ \pi'$ fixes each element of Γ , which supports every $x \in F(\Gamma)$, so that $(\pi^{-1} \circ \pi') \cdot x = x$ and hence $\pi' \cdot x = \pi \cdot x$.

Lastly, $\operatorname{supp}(F(\rho)(x)) = \operatorname{supp}(\pi \cdot x) = \pi \cdot \operatorname{supp}(x) \subseteq \pi \cdot \Gamma \subseteq \Delta$, so $F(\rho)(x) \in F(\Delta)$.

Since the choice of extension is irrelevant, it is easy to see that F is a functor. Thus, we obtain a function $I_* : \mathbf{Nom} \to [\mathbb{I}, \mathbf{Set}]$. This function extends to a functor as follows. Consider an equivariant function $f : X \to Y$. Define a natural transformation $\eta : I_*(X) \to I_*(Y)$ by setting $\eta_{\Gamma} = f \upharpoonright I_*(X)(\Gamma)$. This is well defined because, for any $x \in I_*(X)(\Gamma)$,

$$\operatorname{supp}(f(x)) \subseteq \operatorname{supp}(x) \subseteq \Gamma$$

Naturality follows from the equivariance of f.

Proposition 2. The functor $I_* : Nom \to [\mathbb{I}, Set]$ is full and faithful.

Proof. 1. I_* is faithful: This is essentially due to the fact that, for any $X \in \mathbf{Nom}$, every $x \in X$ is in some fiber of $I_*(X)$. Indeed, let $f, f' : X \rightrightarrows Y$ be equivariant maps such that f = f'. Then, for each $x \in X$,

$$f(x) = I_*(f)_{\operatorname{supp}(x)}(x) = I_*(f')_{\operatorname{supp}(x)}(x) = f'(x).$$

2. I_* is full: Fix $\alpha : I_*(X) \to I_*(Y)$ in $[\mathbb{I}, \mathbf{Set}]$. Let $f : X \to Y$ be the function $x \mapsto \alpha_{\mathrm{supp}(x)}(x)$. To see that it is equivariant, fix a finite permutation π and a point $x \in X$. Notice that π restricts to an injection $\rho : \mathrm{supp}(x) \to \mathrm{supp}(\pi \cdot x)$, since $\pi \cdot \mathrm{supp}(x) = \mathrm{supp}(\pi \cdot x)$. The associated naturality square implies that $f(\pi \cdot x) = \pi \cdot f(x)$. It remains to show that $I_*(f) = \alpha$, so fix $\Gamma \in \mathbb{I}$ and $x \in I_*(X)(\Gamma)$ and let

 $\iota : \operatorname{supp}(x) \to \Gamma$ be the obvious inclusion. Then,

$$I_*(f)(x) = f(x),$$

$$= \alpha_{supp(x)}(x),$$

$$= id_{\mathbb{A}} \cdot (\alpha_{supp(x)}(x)),$$

$$= I_*(Y)(\iota)(\alpha_{supp(x)}(x)),$$

$$= \alpha_{\Gamma}(I_*(X)(\iota)(x)),$$

$$= \alpha_{\Gamma}(id_{\mathbb{A}} \cdot x),$$

$$= \alpha_{\Gamma}(x).$$

2 The Schanuel Topos

2.1 A Site of Contexts and Renamings

Let $F : \mathbb{I} \to \mathbf{Set}, \Gamma \in \mathbb{I}$ and $x \in F(\Gamma)$. We say that a subcontext $\Delta \xrightarrow{\rho} \Gamma$ of Γ supports x whenever renamings of Γ that agree on Δ act equally on x:

$$\rho_1 \circ \rho = \rho_2 \circ \rho \implies \rho_1 \cdot x = \rho_2 \cdot x$$

for every Υ and $\rho_1, \rho_2 : \Gamma \rightrightarrows \Upsilon$ in \mathbb{I} . For example, ρ supports every x in the image of $F(\rho)$, since then $\rho_1 \cdot x = \rho_1 \cdot \rho \cdot y = \rho_2 \cdot \rho \cdot y = \rho_2 \cdot x$ for some $y \in F(\Delta)$ whenever $\rho_1 \circ \rho = \rho_2 \circ \rho$.

If $\Delta \xrightarrow{\rho} \Gamma$ supports x, we would like to say that x lies in the fiber of Δ (modulo permutation of names). In other words, we would like there to be a canonical way of strengthening x to Δ along ρ . The presheaves on \mathbb{I}^{op} for which this is always possible are the sheaves for the atomic topology on \mathbb{I}^{op} , and the category of all such sheaves is called the *Schanuel Topos*.

Recall that the *atomic topology* on \mathbb{I}^{op} is given by the family of all nonempty sieves on objects of \mathbb{I}^{op} . This family is a Grothendieck topology if, and only if, we can complete any cospan in \mathbb{I}^{op} to a commutative square or, equivalently, if we can complete any span in \mathbb{I} to a commutative square, but this is indeed the case:

$$\begin{array}{ccc} \Upsilon & \xrightarrow{\sigma} & \Gamma \\ \stackrel{\rho}{\downarrow} & \stackrel{\downarrow}{\downarrow} {}^{\iota_2} \\ \Delta & \xrightarrow{\iota_1} & (\Delta - \operatorname{im} \rho) + \Upsilon + (\Gamma - \operatorname{im} \sigma) \end{array}$$

where $\iota_1 = id_{\Delta-\operatorname{im}\rho} + \rho^{-1}$ and $i_2 = id_{\Gamma-\operatorname{im}\sigma} + \sigma^{-1}$.

We say that every morphism in \mathbb{I}^{op} covers because the atomic topology on \mathbb{I}^{op} is generated by the singleton families of morphisms. To see this, consider a nonempty sieve S on $\Delta \in \mathbb{I}^{\text{op}}$. Since it is nonempty, it contains a map $\Delta \stackrel{\rho}{\longrightarrow} \Gamma$ in \mathbb{I} such that

$$|\Gamma| = \min\{|\Theta| : \Theta \in \mathbb{I}, S(\Theta) \neq \emptyset\}.$$

Consider any $\Theta \in \mathbb{I}$ and $\sigma \in S(\Theta)$. Then,

$$\begin{split} |\Gamma - \operatorname{im} \rho| &= |\Gamma| - |\operatorname{im} \rho|, \\ |\Gamma| - |\Delta|, \\ &\leq |\Theta| - |\Delta|, \\ &= |\Theta| - |\operatorname{im} \sigma|, \\ &= |\Theta - \operatorname{im} \sigma|, \end{split}$$

so σ factors through ρ and, consequently, σ is in the sieve generated by ρ . Conversely, if $\sigma : \Delta \to \Theta$ is a map in \mathbb{I} that factors through ρ , then $\sigma = \mathsf{y}(\tau)(\rho)$ for some $\tau : \Gamma \to \Theta$ in I. Since $\rho \in S(\Gamma)$ and S is a subpresheaf of $\mathsf{y}(\Delta)$, it follows that $\sigma \in S(\Theta)$.

Notice that the notion of support corresponds to that of *matching family* for the atomic topology. More precisely, for each $F : \mathbb{I} \to \mathbf{Set}$ and $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} , we have a bijection

$$\operatorname{Nat}(S, F) \cong \{ x \in F(\Gamma) \mid \rho \text{ supports } x \},\$$

where S is the sieve generated by ρ , as in Yoneda's Lemma. Explicitly, if $x \in \Gamma$ is supported by ρ , then we let

$$\phi_{\Theta}(\sigma) = \tau \cdot x,$$

where $\tau : \Delta \to \Theta$ is such that $\tau \circ \rho = \sigma$. Notice that τ exists by definition of S, and the meaning of $\phi_{\Theta}(\sigma)$ is independent of τ precisely because ρ supports x.

Conversely, if $\phi: S \to F$, then we let $x = \phi_{\Gamma}(\rho)$, which is supported by ρ because ϕ is natural. Indeed, for any $\tau: \Gamma \to \Theta$, naturality implies that $\tau \cdot x = \phi_{\Theta}(\tau \circ \rho)$, so that $\tau \circ \rho$ determines x.

These constructions are mutual inverses. Indeed, let $x \in F(\Gamma)$ supported by ρ and let ϕ be the matching family corresponding to x. Then, $\phi_{\Gamma}(\rho) = id_{\Gamma} \cdot x = x$. Now let $x = \psi_{\Gamma}(\rho)$ for some matching family ψ . Then, $\phi_{\Theta}(\sigma) = \tau \cdot x = \tau \cdot \psi_{\Gamma}(\rho) = \psi_{\Theta}(\tau \circ \rho) = \psi_{\Theta}(\sigma)$, where $\sigma = \tau \circ \rho$.

2.2 The Schanuel Topos

We have defined the Schanuel Topos as the category of sheaves on \mathbb{I}^{op} for the atomic topology. Next, we characterize its objects in more detail.

Fix a functor $F : \mathbb{I} \to \mathbf{Set}$. Notice, first, that the *amalgamations* of a matching family $\phi : S \to F$ on the sieve S generated by $\Delta \xrightarrow{\rho} \Gamma$ correspond precisely to the preimages

of $x = \phi_{\Gamma}(\rho)$ under the action of ρ . To see this, let ψ be an amalgamation of ϕ and $y = \psi_{\Delta}(id_{\Delta})$. Then, $\rho \cdot y = \psi_{\Gamma}(\rho \circ id_{\Delta}) = \phi_{\Gamma}(\rho) = x$. Conversely, let $\rho \cdot y = x$ and $\psi = (-) \cdot y$. Then, $\psi_{\Theta}(\sigma) = \sigma \cdot y = \tau \cdot \rho \cdot y = \tau \cdot x = \phi_{\Theta}(\sigma)$, where $\sigma = \tau \circ \rho$. These two mappings are inverses. Indeed, $\psi_{\Delta}(id_{\Delta}) = id_{\Delta} \cdot y$. In the other direction, $(-) \cdot \psi_{\Delta}(id_{\Delta}) = \psi$, since $\sigma \cdot \psi_{\Delta}(id_{\Delta}) = \psi_{\Theta}(\sigma \circ id_{\Delta})$ for every $\sigma : \Delta \to \Theta$.

Now, recall that F satisfies the separation condition for S if, and only if, every matching family on S has at most one amalgamation. In particular, $F(\rho)$ must be injective (recall that ρ supports everything in the image of $F(\rho)$). Recall also that F satisfies the sheaf condition for S if, and only if, every matching family on S has a unique amalgamation. In particular, the points supported by ρ must lie in the image of $F(\rho)$. But if that is the case, injectivity is not only necessary but sufficient for separation. Consequently, F satisfies the sheaf condition for S if, and only if, $F(\rho)$ is injective and its image contains every point supported by ρ . In other words,

Proposition 3. $F : \mathbb{I} \to \mathbf{Set}$ is a sheaf for the atomic topology on \mathbb{I}^{op} if, and only if, whenever $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} supports $x \in F(\Gamma)$, there is a unique $y \in F(\Delta)$ such that $\rho \cdot y = x$.

Next, we provide another characterization of sheaves that will come in handy when describing the essential image of $I_* : \mathbf{Nom} \to [\mathbb{I}, \mathbf{Set}]$. It corresponds to the fact that the finite supports of a point in a Perm A-set are closed under binary intersection.

Proposition 4. $F : \mathbb{I} \to \mathbf{Set}$ is a sheaf for the atomic topology on \mathbb{I}^{op} if, and only if, F is pullback-preserving.

Proof. In the proof, we shall make use of the fact that the inclusion of \mathbb{I} into **Set** creates pullbacks.

Suppose that F is pullback-preserving. Suppose, furthermore, that $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} supports $x \in F(\Gamma)$. Consider the pullback square

$$\begin{array}{ccc} \Delta & & \stackrel{\rho}{\longrightarrow} & \Gamma \\ \downarrow \rho & & \downarrow \iota_2 \\ \Gamma & \stackrel{\iota_1}{\longrightarrow} & (\Gamma - \operatorname{im} \rho) + \Delta + (\Gamma - \operatorname{im} \rho) \end{array}$$

where ι_1 and ι_2 are defined as before. Since F preserves pullbacks and ρ supports x, there is a unique $y \in F(\Delta)$ such that $\rho \cdot y = x$. Hence, F is a sheaf.

Conversely, suppose that F is a sheaf. Fix a pullback square

$$\begin{array}{ccc} \Delta & \stackrel{\rho}{\longrightarrow} & \Gamma \\ \sigma & & \downarrow^{\tau} \\ \Theta & \stackrel{}{\longrightarrow} & \Upsilon \end{array}$$

Fix also $x \in F(\Gamma)$ and $y \in F(\Theta)$ such that $\tau \cdot x = \xi \cdot y$. We shall show that ρ supports x, so that there is a unique $z \in F(\Delta)$ such that $\rho \cdot z = x$. Notice that such a z also satisfies $\sigma \cdot z = y$, since $\xi \cdot \sigma \cdot z = \tau \cdot \rho \cdot z = \tau \cdot z = \xi \cdot y$ and $F(\xi)$ is injective.

Now fix two maps $\alpha, \beta : \Gamma \rightrightarrows \Gamma'$ such that $\alpha \circ \rho = \beta \circ \rho$. We claim that $\alpha \cdot x = \beta \cdot x$. To see this, notice that we can extend the previous diagram as follows:

$$\begin{array}{ccc} \Delta & \stackrel{\rho}{\longrightarrow} \Gamma & \stackrel{\alpha}{\longrightarrow} \Xi \\ \downarrow & & \\ \sigma & & \\ \phi & & \\ \Theta & \stackrel{\gamma}{\longrightarrow} \Upsilon & \stackrel{\gamma}{\longrightarrow} (\Upsilon - \operatorname{im} \tau) + \Xi \end{array}$$

where $\iota \circ \alpha = \gamma \circ \tau$, $\iota \circ \beta = \gamma \circ \tau$ and $\gamma \circ \xi = \delta \circ \xi$. Here, ι is the coproduct inclusion of Ξ and γ and δ are defined as follows:

$$\gamma(a) = \begin{cases} \alpha(\tau^{-1}(a)) & a \in \operatorname{im} \tau \\ a & \text{otherwise} \end{cases}$$
$$\delta(a) = \begin{cases} \beta(\tau^{-1}(a)) & a \in \operatorname{im} \tau \\ a & \text{otherwise} \end{cases}$$

Then, $\iota \cdot \alpha \cdot x = \gamma \cdot \tau \cdot x = \gamma \cdot \xi \cdot y = \delta \cdot \xi \cdot y = \delta \cdot \tau \cdot x = \iota \cdot \beta \cdot x$. Since $F(\iota)$ is injective, $\alpha \cdot x = \beta \cdot x$, as needed.

2.3 The Left-Adjoint

Proposition 5. The inclusion $I_* : \mathbf{Nom} \hookrightarrow [\mathbb{I}, \mathbf{Set}]$ has a left-adjoint, which we denote by $I^* : [\mathbb{I}, \mathbf{Set}] \to \mathbf{Nom}.$

Proof. Every presheaf F on \mathbb{I}^{op} gives rise to a nominal set X:

1. The wide subcategory of \mathbb{I} consisting of the canonical inclusions is a directed set. Take X to be the colimit of the restriction of F to this directed set. Because it is directed, the colimit can be explicitly described as the quotient of $\sum_{\Gamma \in \mathbb{A}} F(\Gamma)$ by the equivalence relation

$$(\Gamma, x) \sim (\Delta, y) \iff (\exists \Upsilon \supseteq \Gamma \cup \Delta) F(\Gamma \hookrightarrow \Upsilon)(x) = F(\Delta \hookrightarrow \Upsilon)(y).$$

We will write $[\Gamma, x]$ for the equivalence class of (Γ, x) .

2. Take the action of $\pi \in \operatorname{Perm} \mathbb{A}$ on $[\Gamma, x]$ to be

$$\pi \cdot [\Gamma, x] = [\pi \cdot \Gamma, F(\pi \restriction \Gamma)(x)].$$

This action is well defined. Indeed, suppose that $(\Gamma, x) \sim (\Delta, y)$. Let $\Upsilon \supseteq \Gamma \cup \Delta$ such that $F(\Gamma \hookrightarrow \Upsilon)(x) = F(\Delta \hookrightarrow \Upsilon)(y)$. Then, we have that

and similarly for Δ , so that $(\pi \cdot \Gamma, F(\pi \restriction \Gamma)(x)) \sim (\pi \cdot \Delta, F(\pi \restriction \Delta)(x)).$

3. Let $[\Gamma, x] \in X$ and suppose $(\forall a \in \Gamma)\pi(a) = a$. Then, $\pi \cdot A = A$ and $\pi \upharpoonright \Gamma = id_{\Gamma}$, so $\pi \cdot [\Gamma, x] = [\Gamma, x]$. Hence, Γ supports $[\Gamma, x]$.

It is not hard to show that the family of maps $x \in F(\Gamma) \mapsto [\Gamma, x]$ indexed by $\Gamma \in \mathbb{I}$ gives rise to a natural transformation $\eta_F: F \to I_*(X)$. We claim that, for any nominal set Y and natural transformation $\alpha: F \to I_*(Y)$, there is a unique equivariant function $\hat{\alpha}: X \to Y$ such that $\alpha = I_*(\hat{\alpha}) \circ \eta_F$:

For uniqueness, notice that, if such a $\hat{\alpha}$ existed, then we'd have

. .

$$\hat{\alpha}[\Gamma, x] = (I_*(\hat{\alpha}))_{\Gamma}((\eta_F)_{\Gamma}(x)),$$
$$= \alpha_{\Gamma}(x)$$

For existence, notice that such an assignment is well defined, for if $(\Gamma, x) \sim (\Delta, y)$, then, for some $\Upsilon \supseteq \Gamma \cup \Delta$,

$$\begin{split} \alpha_{\Gamma}(x) &= id_{\mathbb{A}} \cdot \alpha_{\Gamma}(x), \\ &= I_{*}(Y)(\Gamma \hookrightarrow \Upsilon)(\alpha_{\Gamma}(x)), \\ &= \alpha_{\Upsilon}(F(\Gamma \hookrightarrow \Upsilon)(x)), \\ &= \alpha_{\Upsilon}(F(\Delta \hookrightarrow \Upsilon)(y)), \\ &= I_{*}(Y)(\Delta \hookrightarrow \Upsilon)(\alpha_{\Delta}(y)), \\ &= id_{\mathbb{A}} \cdot \alpha_{\Delta}(x), \\ &= \alpha_{\Delta}(x). \end{split}$$

Notice, furthermore, that it is equivariant, since for any $\pi \in \operatorname{Perm} \mathbb{A}$,

$$\pi \cdot \alpha_{\Gamma}(x) = I_{*}(Y)(\pi \upharpoonright \Gamma)(\alpha_{\Gamma}(x)),$$

= $\alpha_{\pi \cdot \Gamma}(F(\pi \upharpoonright)(x)).$

Proposition 6. Nom is equivalent to the Schanuel topos.

Proof. It suffices to show that the Schanuel topos is the essential image of $I_* : \mathbf{Nom} \hookrightarrow [\mathbb{I}, \mathbf{Set}]$ which, as we have seen, is full and faithful. So fix a sheaf F. Let $X = I^*(F)$. We claim that η_F is an isomorphism. Fix $\Gamma \in \mathbb{I}$.

Notice, first, that $(\eta_F)_{\Gamma}$ is injective. Indeed, if $(\Gamma, x) \sim (\Gamma, x')$ for some $x, x' \in F(\Gamma)$, then $F(\Gamma \hookrightarrow \Upsilon)(x) = F(\Gamma \hookrightarrow \Upsilon)(x')$ for some $\Upsilon \supseteq \Gamma$; since F is a sheaf, it follows that x = x'.

Next, we show that $(\eta_F)_{\Gamma}$ is surjective. Suppose $[\Delta, y]$ is supported by Γ . We also know that $[\Delta, y]$ is supported by Δ . Hence, $[\Delta, y]$ is supported by $\Delta \cap \Gamma$. Let $\rho : (\Delta - \Gamma) \xrightarrow{\cong} \Upsilon$ with Υ disjoint from Δ . Define $\sigma : \Delta \to \Delta \cup \Upsilon$ as follows:

$$\sigma(a) = \begin{cases} a & a \in \Gamma, \\ \rho(a) & a \notin \Gamma. \end{cases}$$

and let π be a finite permutation extending σ . Then, we obtain the following pullback square:

It's image under F is, therefore, a pullback square. Notice that

$$\begin{split} [\Delta \cup \Upsilon, F(\iota)(y)] &= [\Delta, y], & \text{by definition,} \\ &= \pi \cdot [\Delta, y], & \pi \text{ fixes } \Delta \cap \Gamma \text{ pointwise,} \\ &= [\pi \cdot \Delta, F(\pi \upharpoonright \Delta)(y)], & \text{by definition,} \\ &= [\Delta, F(\sigma)(y)], & \text{by definition.} \end{split}$$

Since $(\eta_F)_{\Gamma}$ is injective, $F(\iota)(y) = F(\sigma)(y)$ and, consequently, there is a unique $z \in F(\Delta \cap \Gamma)$ such that $F(\Delta \cap \Gamma \hookrightarrow \Delta)(z) = y$. Now let $x = F(\Delta \cap \Gamma \hookrightarrow \Gamma)(z)$. Then,

$$\begin{split} F(\Gamma \hookrightarrow \Delta \cup \Gamma)(x) &= F(\Gamma \hookrightarrow \Delta \cup \Gamma)(F(\Delta \cap \Gamma \hookrightarrow \Gamma)(z)), \\ &= F(\Delta \hookrightarrow \Delta \cup \Gamma)(F(\Delta \cap \Gamma \hookrightarrow \Delta)(z)), \\ &= F(\Delta \hookrightarrow \Delta \cup \Gamma)(y), \end{split}$$

so $[\Gamma, x] = [\Delta, y]$ indeed.

3 References

References

- [1] P. Johnstone (2002), Sketches of an Elephant: A Topos Theory Compendium, Vol. 1. Oxford University Press.
- [2] S. Mac Lane and I. Moerdijk (1994), Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer New York.
- [3] A. Pitts (2013), Nominal Sets: Name and Symmetry in Computer Science. Cambridge University Press.
- [4] J. Sterling and D. Morrison (2016), "Syntax and Semantics of Abstract Binding Trees". arXiv:1601.06298