Nominal Sets and the Schanuel Topos

Fernando Larrain
September 28, 2022

1 Nominal Sets

1.1 Group Actions

Let G be a group. A G-set is a functor over G or, equivalently, a set X equipped with a left action $\mu: G \times X \rightarrow X$ of G. An equivariant map between G-sets is a natural transformation between them or, equivalently, a function between their underlying sets that respects the action of G.

The category $[G$, Set] of G-sets and equivariant maps is an elementary topos because it is a category of presheaves. Furthermore, it is boolean, so it supports classical higher order logic. The subobject classifier is given by the discrete G-set $\mathbb{B}=\{\top, \perp\}$ (a G-set (X, μ) is discrete when $\mu=\pi_{2}$).

The exponentials in $[G, \mathbf{S e t}]$ are the exponentials in Set, where the action of $g \in G$ on a function ϕ between G-sets is given by

$$
(g \cdot \phi)(x)=g \cdot\left(\phi\left(g^{-1} \cdot x\right)\right) .
$$

In the particular case of powersets, this amounts to mapping subsets S of a G-set X to their image $g \cdot S=\{g \cdot x \mid x \in X\}$. If S is closed under the action of G, we say S is equivariant. These subsets are important because they correspond precisely to the subobjects of X. Also, quotients of G-sets by equivariant equivalence relations give rise to quotients in $[G$, Set $]$ in the obvious way.

1.2 Permutation Groups

Let A be a set. Then, Sym A denotes the symmetric group on A and Perm A, the subgroup of $\operatorname{Sym} A$ of finite permutations. A permutation π is said to be finite if $\{a \in A \mid \pi(a) \neq a\}$ is.

Given $a, a^{\prime} \in A$, we define $\left(a a^{\prime}\right)$ as the finite permutation that swaps a and a^{\prime} and leaves everything else unchanged. Such a permutation is called a transposition. Transpositions generate Perm \mathbb{A}. In fact, for any finite permutation π, we can choose its factors ($a a^{\prime}$) so that

$$
\pi(a) \neq a \neq a^{\prime} \neq \pi\left(a^{\prime}\right)
$$

i.e. so that they are neither degenerate nor redundant.

1.3 Nominal Sets

Fix a countably infinite set \mathbb{A}. The elements of \mathbb{A} will be called atomic names.
Given a Perm \mathbb{A}-set X, we say that $A \subseteq \mathbb{A}$ supports $x \in X$ if every permutation that fixes each element in A also fixes x :

$$
(\forall a \in A) \pi(a)=a \Longrightarrow \pi(x)=x
$$

In terms of transpositions, A supports x if

$$
\left(\forall a_{1}, a_{2} \in \mathbb{A}-A\right)\left(a_{1} a_{2}\right) \cdot x=x .
$$

A fundamental property of the set of finite supports of x is that it is closed under binary intersections. In other words, given two finite sets A_{1} and A_{2}, if both support x, then so does $A_{1} \cap A_{2}$. To see this, fix $a_{1}, a_{2} \in \mathbb{A}-\left(A_{1} \cap A_{2}\right)$. We want to show that $\left(a_{1} a_{2}\right) \cdot x=x$. Notice that a_{1} and a_{2} might be in A_{1} or in A_{2}, so we cannot use our hypotheses directly. However, since A_{1} and A_{2} are finite, we can find an "interpolant" a_{3} distinct from a_{1} and a_{2} that is neither in A_{1} nor A_{2} to factor the transposition as $\left(a_{1} a_{2}\right)=\left(a_{1} a_{3}\right) \circ\left(a_{2} a_{3}\right) \circ\left(a_{1} a_{3}\right)$ (this presupposes that $a_{1} \neq a_{2}$, but if that is not the case, we are done anyway). That the goal follows from the hypotheses is now evident.

A nominal set is a $\operatorname{Perm} \mathbb{A}$-set whose every element has finite support. For X a nominal set and $x \in X$, we let $\operatorname{supp}_{X}(x)$ be the least finite $A \subseteq \mathbb{A}$ supporting x (it exists because of the closure property just mentioned). Nom is the full subcategory of [Perm \mathbb{A}, Set] spanned by the nominal sets. In fact, it is a coreflective subcategory of $[\operatorname{Perm} \mathbb{A}$, Set $]$, i.e. its associated inclusion functor has a right-adjoint given on Perm \mathbb{A}-sets X by

$$
X_{\mathrm{fs}}=\{x \in X \mid x \text { is finitely supported }\} .
$$

Furthermore, it is a boolean Grothendieck topos, as we show next. For the proof, we shall require a few basic results about nominal sets.

First, for any finite $A \subseteq \mathbb{A}, \operatorname{supp}(A)=A$, so the set $\mathcal{P}_{f}(\mathbb{A})$ of finite subsets of \mathbb{A} is a nominal set.

Second, for any Perm \mathbb{A}-set X, the function $\operatorname{supp}_{X}: X \rightarrow \mathcal{P}_{f}(\mathbb{A})$ is equivariant, because it is definable in the internal logic of $[\operatorname{Perm} \mathbb{A}$, Set $]$.

Third, if $f: X \rightarrow Y$ is an equivariant function, then it preserves support, i.e. if A supports $x \in X$, then A supports $f(x)$.

1.4 A Category of Contexts and Renamings

Let \mathbb{I} be the category of finite subsets of \mathbb{A} and injections between them, with identities and compositions as in Set. We can think of \mathbb{I}^{op} as a category of (naming) contexts and renamings (contractions excluded).

Proposition 1. There is a functor $I_{*}: \operatorname{Nom} \rightarrow[\mathbb{I}$, Set $]$.
Proof. Every nominal set X gives rise to a presheaf F on $\mathbb{I}^{\text {op }}$:

1. On contexts $\Gamma \in \mathbb{I}$, we put $F(\Gamma)=\{x \in X \mid \operatorname{supp}(x) \subseteq \Gamma\}$.
2. On renamings $\Gamma \xrightarrow{\rho} \Delta$ in \mathbb{I}, we let $F(\rho)(x)=\pi \cdot x$, where $\pi \in \operatorname{Perm} \mathbb{A}$ satisfies $\pi \upharpoonright \Gamma=\rho$.

Notice that every injection $\rho: \Gamma \rightarrow \Delta$ in \mathbb{I} can be extended to a finite permutation π on \mathbb{A}, so that $F(\rho)$ is always defined. Indeed, since $\Gamma \cong \operatorname{im} \rho$,

$$
\begin{aligned}
|\operatorname{im} \rho-\Gamma| & =|\operatorname{im} \rho|-|\Gamma \cap \operatorname{im} \rho|, \\
& =|\Gamma|-|\Gamma \cap \operatorname{im} \rho|, \\
& =|\operatorname{im} \rho-\Gamma|,
\end{aligned}
$$

so there is a bijection $\rho^{\prime}:(\operatorname{im} \rho-\Gamma) \rightarrow(\Gamma-\operatorname{im} \rho)$ and one can set

$$
\pi(a)= \begin{cases}\rho(a) & a \in \Gamma \\ \rho^{\prime}(a) & a \in \operatorname{im} \rho-\Gamma \\ a & \text { otherwise }\end{cases}
$$

Furthermore, the behavior of $F(\rho)$ does not depend on the choice of extension π. Indeed, if π and π^{\prime} extend ρ, then $\pi^{-1} \circ \pi^{\prime}$ fixes each element of Γ, which supports every $x \in F(\Gamma)$, so that $\left(\pi^{-1} \circ \pi^{\prime}\right) \cdot x=x$ and hence $\pi^{\prime} \cdot x=\pi \cdot x$.

Lastly, $\operatorname{supp}(F(\rho)(x))=\operatorname{supp}(\pi \cdot x)=\pi \cdot \operatorname{supp}(x) \subseteq \pi \cdot \Gamma \subseteq \Delta$, so $F(\rho)(x) \in F(\Delta)$.
Since the choice of extension is irrelevant, it is easy to see that F is a functor. Thus, we obtain a function $I_{*}:$ Nom $\rightarrow[\mathbb{I}$, Set $]$. This function extends to a functor as follows. Consider an equivariant function $f: X \rightarrow Y$. Define a natural transformation $\eta: I_{*}(X) \rightarrow$ $I_{*}(Y)$ by setting $\eta_{\Gamma}=f \upharpoonright I_{*}(X)(\Gamma)$. This is well defined because, for any $x \in I_{*}(X)(\Gamma)$,

$$
\operatorname{supp}(f(x)) \subseteq \operatorname{supp}(x) \subseteq \Gamma
$$

Naturality follows from the equivariance of f.
Proposition 2. The functor $I_{*}: \mathbf{N o m} \rightarrow[\mathbb{I}, \mathbf{S e t}]$ is full and faithful.
Proof. 1. I_{*} is faithful: This is essentially due to the fact that, for any $X \in$ Nom, every $x \in X$ is in some fiber of $I_{*}(X)$. Indeed, let $f, f^{\prime}: X \rightrightarrows Y$ be equivariant maps such that $f=f^{\prime}$. Then, for each $x \in X$,

$$
f(x)=I_{*}(f)_{\operatorname{supp}(x)}(x)=I_{*}\left(f^{\prime}\right)_{\operatorname{supp}(x)}(x)=f^{\prime}(x) .
$$

2. I_{*} is full: Fix $\alpha: I_{*}(X) \rightarrow I_{*}(Y)$ in $[\mathbb{I}$, Set $]$. Let $f: X \rightarrow Y$ be the function $x \mapsto \alpha_{\text {supp }(x)}(x)$. To see that it is equivariant, fix a finite permutation π and a point $x \in X$. Notice that π restricts to an injection $\rho: \operatorname{supp}(x) \rightarrow \operatorname{supp}(\pi \cdot x)$, since $\pi \cdot \operatorname{supp}(x)=\operatorname{supp}(\pi \cdot x)$. The associated naturality square implies that $f(\pi \cdot x)=$ $\pi \cdot f(x)$. It remains to show that $I_{*}(f)=\alpha$, so fix $\Gamma \in \mathbb{I}$ and $x \in I_{*}(X)(\Gamma)$ and let
$\iota: \operatorname{supp}(x) \rightarrow \Gamma$ be the obvious inclusion. Then,

$$
\begin{aligned}
I_{*}(f)(x) & =f(x), \\
& =\alpha_{\operatorname{supp}(x)}(x), \\
& =i d_{\mathbb{A}} \cdot\left(\alpha_{\operatorname{supp}(x)}(x)\right), \\
& =I_{*}(Y)(\iota)\left(\alpha_{\operatorname{supp}(x)}(x)\right), \\
& =\alpha_{\Gamma}\left(I_{*}(X)(\iota)(x)\right), \\
& =\alpha_{\Gamma}\left(i d_{\mathbb{A}} \cdot x\right), \\
& =\alpha_{\Gamma}(x) .
\end{aligned}
$$

2 The Schanuel Topos

2.1 A Site of Contexts and Renamings

Let $F: \mathbb{I} \rightarrow$ Set, $\Gamma \in \mathbb{I}$ and $x \in F(\Gamma)$. We say that a subcontext $\Delta \xrightarrow{\rho} \Gamma$ of Γ supports x whenever renamings of Γ that agree on Δ act equally on x :

$$
\rho_{1} \circ \rho=\rho_{2} \circ \rho \Longrightarrow \rho_{1} \cdot x=\rho_{2} \cdot x
$$

for every Υ and $\rho_{1}, \rho_{2}: \Gamma \rightrightarrows \Upsilon$ in \mathbb{I}. For example, ρ supports every x in the image of $F(\rho)$, since then $\rho_{1} \cdot x=\rho_{1} \cdot \rho \cdot y=\rho_{2} \cdot \rho \cdot y=\rho_{2} \cdot x$ for some $y \in F(\Delta)$ whenever $\rho_{1} \circ \rho=\rho_{2} \circ \rho$.

If $\Delta \xrightarrow{\rho} \Gamma$ supports x, we would like to say that x lies in the fiber of Δ (modulo permutation of names). In other words, we would like there to be a canonical way of strengthening x to Δ along ρ. The presheaves on \mathbb{I}^{op} for which this is always possible are the sheaves for the atomic topology on \mathbb{I}^{op}, and the category of all such sheaves is called the Schanuel Topos.

Recall that the atomic topology on \mathbb{I}^{op} is given by the family of all nonempty sieves on objects of $\mathbb{I}^{\text {op }}$. This family is a Grothendieck topology if, and only if, we can complete any cospan in $\mathbb{I}^{\text {op }}$ to a commutative square or, equivalently, if we can complete any span in \mathbb{I} to a commutative square, but this is indeed the case:

where $\iota_{1}=i d_{\Delta-\mathrm{im} \rho}+\rho^{-1}$ and $i_{2}=i d_{\Gamma-\mathrm{im} \sigma}+\sigma^{-1}$.

We say that every morphism in $\mathbb{I}^{\text {op }}$ covers because the atomic topology on $\mathbb{I}^{\text {op }}$ is generated by the singleton families of morphisms. To see this, consider a nonemtpy sieve S on $\Delta \in \mathbb{I}^{\mathrm{op}}$. Since it is nonempty, it contains a map $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} such that

$$
|\Gamma|=\min \{|\Theta|: \Theta \in \mathbb{I}, S(\Theta) \neq \emptyset\}
$$

Consider any $\Theta \in \mathbb{I}$ and $\sigma \in S(\Theta)$. Then,

$$
\begin{aligned}
|\Gamma-\operatorname{im} \rho| & =|\Gamma|-|\operatorname{im} \rho|, \\
& |\Gamma|-|\Delta|, \\
& \leq|\Theta|-|\Delta|, \\
& =|\Theta|-|\operatorname{im} \sigma|, \\
& =|\Theta-\operatorname{im} \sigma|,
\end{aligned}
$$

so σ factors through ρ and, consequently, σ is in the sieve generated by ρ. Conversely, if $\sigma: \Delta \rightarrow \Theta$ is a map in \mathbb{I} that factors through ρ, then $\sigma=\mathrm{y}(\tau)(\rho)$ for some $\tau: \Gamma \rightarrow \Theta$ in I. Since $\rho \in S(\Gamma)$ and S is a subpresheaf of $\mathrm{y}(\Delta)$, it follows that $\sigma \in S(\Theta)$.

Notice that the notion of support corresponds to that of matching family for the atomic topology. More precisely, for each $F: \mathbb{I} \rightarrow$ Set and $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I}, we have a bijection

$$
\operatorname{Nat}(S, F) \cong\{x \in F(\Gamma) \mid \rho \text { supports } x\}
$$

where S is the sieve generated by ρ, as in Yoneda's Lemma. Explicitly, if $x \in \Gamma$ is supported by ρ, then we let

$$
\phi_{\Theta}(\sigma)=\tau \cdot x
$$

where $\tau: \Delta \rightarrow \Theta$ is such that $\tau \circ \rho=\sigma$. Notice that τ exists by definition of S, and the meaning of $\phi_{\Theta}(\sigma)$ is independent of τ precisely because ρ supports x.

Conversely, if $\phi: S \rightarrow F$, then we let $x=\phi_{\Gamma}(\rho)$, which is supported by ρ because ϕ is natural. Indeed, for any $\tau: \Gamma \rightarrow \Theta$, naturality implies that $\tau \cdot x=\phi_{\Theta}(\tau \circ \rho)$, so that $\tau \circ \rho$ determines x.

These constructions are mutual inverses. Indeed, let $x \in F(\Gamma)$ supported by ρ and let ϕ be the matching family corresponding to x. Then, $\phi_{\Gamma}(\rho)=i d_{\Gamma} \cdot x=x$. Now let $x=\psi_{\Gamma}(\rho)$ for some matching family ψ. Then, $\phi_{\Theta}(\sigma)=\tau \cdot x=\tau \cdot \psi_{\Gamma}(\rho)=\psi_{\Theta}(\tau \circ \rho)=\psi_{\Theta}(\sigma)$, where $\sigma=\tau \circ \rho$.

2.2 The Schanuel Topos

We have defined the Schanuel Topos as the category of sheaves on \mathbb{I}^{p} for the atomic topology. Next, we characterize its objects in more detail.

Fix a functor $F: \mathbb{I} \rightarrow$ Set. Notice, first, that the amalgamations of a matching family $\phi: S \rightarrow F$ on the sieve S generated by $\Delta \xrightarrow{\rho} \Gamma$ correspond precisely to the preimages
of $x=\phi_{\Gamma}(\rho)$ under the action of ρ. To see this, let ψ be an amalgamation of ϕ and $y=\psi_{\Delta}\left(i d_{\Delta}\right)$. Then, $\rho \cdot y=\psi_{\Gamma}\left(\rho \circ i d_{\Delta}\right)=\phi_{\Gamma}(\rho)=x$. Conversely, let $\rho \cdot y=x$ and $\psi=(-) \cdot y$. Then, $\psi_{\Theta}(\sigma)=\sigma \cdot y=\tau \cdot \rho \cdot y=\tau \cdot x=\phi_{\Theta}(\sigma)$, where $\sigma=\tau \circ \rho$. These two mappings are inverses. Indeed, $\psi_{\Delta}\left(i d_{\Delta}\right)=i d_{\Delta} \cdot y$. In the other direction, $(-) \cdot \psi_{\Delta}\left(i d_{\Delta}\right)=\psi$, since $\sigma \cdot \psi_{\Delta}\left(i d_{\Delta}\right)=\psi_{\Theta}\left(\sigma \circ i d_{\Delta}\right)$ for every $\sigma: \Delta \rightarrow \Theta$.

Now, recall that F satisfies the separation condition for S if, and only if, every matching family on S has at most one amalgamation. In particular, $F(\rho)$ must be injective (recall that ρ supports everything in the image of $F(\rho)$). Recall also that F satisfies the sheaf condition for S if, and only if, every matching family on S has a unique amalgamation. In particular, the points supported by ρ must lie in the image of $F(\rho)$. But if that is the case, injectivity is not only necessary but sufficient for separation. Consequently, F satisfies the sheaf condition for S if, and only if, $F(\rho)$ is injective and its image contains every point supported by ρ. In other words,

Proposition 3. $F: \mathbb{I} \rightarrow$ Set is a sheaf for the atomic topology on \mathbb{I}^{op} if, and only if, whenever $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} supports $x \in F(\Gamma)$, there is a unique $y \in F(\Delta)$ such that $\rho \cdot y=x$.

Next, we provide another characterization of sheaves that will come in handy when describing the essential image of $I_{*}: \operatorname{Nom} \rightarrow[\mathbb{I}, \mathbf{S e t}]$. It corresponds to the fact that the finite supports of a point in a Perm \mathbb{A}-set are closed under binary intersection.

Proposition 4. $F: \mathbb{I} \rightarrow$ Set is a sheaf for the atomic topology on $\mathbb{I}^{\text {op }}$ if, and only if, F is pullback-preserving.

Proof. In the proof, we shall make use of the fact that the inclusion of \mathbb{I} into Set creates pullbacks.

Suppose that F is pullback-preserving. Suppose, furthermore, that $\Delta \xrightarrow{\rho} \Gamma$ in \mathbb{I} supports $x \in F(\Gamma)$. Consider the pullback square

where ι_{1} and ι_{2} are defined as before. Since F preserves pullbacks and ρ supports x, there is a unique $y \in F(\Delta)$ such that $\rho \cdot y=x$. Hence, F is a sheaf.

Conversely, suppose that F is a sheaf. Fix a pullback square

Fix also $x \in F(\Gamma)$ and $y \in F(\Theta)$ such that $\tau \cdot x=\xi \cdot y$. We shall show that ρ supports x, so that there is a unique $z \in F(\Delta)$ such that $\rho \cdot z=x$. Notice that such a z also satisfies $\sigma \cdot z=y$, since $\xi \cdot \sigma \cdot z=\tau \cdot \rho \cdot z=\tau \cdot z=\xi \cdot y$ and $F(\xi)$ is injective.

Now fix two maps $\alpha, \beta: \Gamma \rightrightarrows \Gamma^{\prime}$ such that $\alpha \circ \rho=\beta \circ \rho$. We claim that $\alpha \cdot x=\beta \cdot x$. To see this, notice that we can extend the previous diagram as follows:

where $\iota \circ \alpha=\gamma \circ \tau, \iota \circ \beta=\gamma \circ \tau$ and $\gamma \circ \xi=\delta \circ \xi$. Here, ι is the coproduct inclusion of Ξ and γ and δ are defined as follows:

$$
\begin{aligned}
& \gamma(a)= \begin{cases}\alpha\left(\tau^{-1}(a)\right) & a \in \operatorname{im} \tau \\
a & \text { otherwise }\end{cases} \\
& \delta(a)= \begin{cases}\beta\left(\tau^{-1}(a)\right) & a \in \operatorname{im} \tau \\
a & \text { otherwise }\end{cases}
\end{aligned}
$$

Then, $\iota \cdot \alpha \cdot x=\gamma \cdot \tau \cdot x=\gamma \cdot \xi \cdot y=\delta \cdot \xi \cdot y=\delta \cdot \tau \cdot x=\iota \cdot \beta \cdot x$. Since $F(\iota)$ is injective, $\alpha \cdot x=\beta \cdot x$, as needed.

2.3 The Left-Adjoint

Proposition 5. The inclusion $I_{*}: \mathbf{N o m} \hookrightarrow[\mathbb{I}, \mathbf{S e t}]$ has a left-adjoint, which we denote by $I^{*}:[\mathbb{I}$, Set $] \rightarrow$ Nom.

Proof. Every presheaf F on $\mathbb{I}^{\text {op }}$ gives rise to a nominal set X :

1. The wide subcategory of \mathbb{I} consisting of the canonical inclusions is a directed set. Take X to be the colimit of the restriction of F to this directed set. Because it is directed, the colimit can be explicitly described as the quotient of $\sum_{\Gamma \in \mathbb{A}} F(\Gamma)$ by the equivalence relation

$$
(\Gamma, x) \sim(\Delta, y) \Longleftrightarrow(\exists \Upsilon \supseteq \Gamma \cup \Delta) F(\Gamma \hookrightarrow \Upsilon)(x)=F(\Delta \hookrightarrow \Upsilon)(y) .
$$

We will write $[\Gamma, x]$ for the equivalence class of (Γ, x).
2. Take the action of $\pi \in \operatorname{Perm} \mathbb{A}$ on $[\Gamma, x]$ to be

$$
\pi \cdot[\Gamma, x]=[\pi \cdot \Gamma, F(\pi \upharpoonright \Gamma)(x)] .
$$

This action is well defined. Indeed, suppose that $(\Gamma, x) \sim(\Delta, y)$. Let $\Upsilon \supseteq \Gamma \cup \Delta$ such that $F(\Gamma \hookrightarrow \Upsilon)(x)=F(\Delta \hookrightarrow \Upsilon)(y)$. Then, we have that

and similarly for Δ, so that $(\pi \cdot \Gamma, F(\pi \upharpoonright \Gamma)(x)) \sim(\pi \cdot \Delta, F(\pi \upharpoonright \Delta)(x))$.
3. Let $[\Gamma, x] \in X$ and suppose $(\forall a \in \Gamma) \pi(a)=a$. Then, $\pi \cdot A=A$ and $\pi \upharpoonright \Gamma=i d_{\Gamma}$, so $\pi \cdot[\Gamma, x]=[\Gamma, x]$. Hence, Γ supports $[\Gamma, x]$.

It is not hard to show that the family of maps $x \in F(\Gamma) \mapsto[\Gamma, x]$ indexed by $\Gamma \in \mathbb{I}$ gives rise to a natural transformation $\eta_{F}: F \rightarrow I_{*}(X)$. We claim that, for any nominal set Y and natural transformation $\alpha: F \rightarrow I_{*}(Y)$, there is a unique equivariant function $\hat{\alpha}: X \rightarrow Y$ such that $\alpha=I_{*}(\hat{\alpha}) \circ \eta_{F}$:

$$
X \cdots Y
$$

For uniqueness, notice that, if such a $\hat{\alpha}$ existed, then we'd have

$$
\begin{aligned}
\hat{\alpha}[\Gamma, x] & =\left(I_{*}(\hat{\alpha})\right)_{\Gamma}\left(\left(\eta_{F}\right)_{\Gamma}(x)\right), \\
& =\alpha_{\Gamma}(x)
\end{aligned}
$$

For existence, notice that such an assignment is well defined, for if $(\Gamma, x) \sim(\Delta, y)$, then, for some $\Upsilon \supseteq \Gamma \cup \Delta$,

$$
\begin{aligned}
\alpha_{\Gamma}(x) & =i d_{\mathbb{A}} \cdot \alpha_{\Gamma}(x), \\
& =I_{*}(Y)(\Gamma \hookrightarrow \Upsilon)\left(\alpha_{\Gamma}(x)\right), \\
& =\alpha_{\Upsilon}(F(\Gamma \hookrightarrow \Upsilon)(x)), \\
& =\alpha_{\Upsilon}(F(\Delta \hookrightarrow \Upsilon)(y)), \\
& =I_{*}(Y)(\Delta \hookrightarrow \Upsilon)\left(\alpha_{\Delta}(y)\right), \\
& =i d_{\mathbb{A}} \cdot \alpha_{\Delta}(x), \\
& =\alpha_{\Delta}(x) .
\end{aligned}
$$

Notice, furthermore, that it is equivariant, since for any $\pi \in \operatorname{Perm} \mathbb{A}$,

$$
\begin{aligned}
\pi \cdot \alpha_{\Gamma}(x) & =I_{*}(Y)(\pi \upharpoonright \Gamma)\left(\alpha_{\Gamma}(x)\right), \\
& =\alpha_{\pi \cdot \Gamma}(F(\pi \upharpoonright)(x)) .
\end{aligned}
$$

Proposition 6. Nom is equivalent to the Schanuel topos.
Proof. It suffices to show that the Schanuel topos is the essential image of I_{*} : Nom \hookrightarrow $\left[\mathbb{I}\right.$, Set] which, as we have seen, is full and faithful. So fix a sheaf F. Let $X=I^{*}(F)$. We claim that η_{F} is an isomorphism. Fix $\Gamma \in \mathbb{I}$.

Notice, first, that $\left(\eta_{F}\right)_{\Gamma}$ is injective. Indeed, if $(\Gamma, x) \sim\left(\Gamma, x^{\prime}\right)$ for some $x, x^{\prime} \in F(\Gamma)$, then $F(\Gamma \hookrightarrow \Upsilon)(x)=F(\Gamma \hookrightarrow \Upsilon)\left(x^{\prime}\right)$ for some $\Upsilon \supseteq \Gamma$; since F is a sheaf, it follows that $x=x^{\prime}$.

Next, we show that $\left(\eta_{F}\right)_{\Gamma}$ is surjective. Suppose $[\Delta, y]$ is supported by Γ. We also know that $[\Delta, y]$ is supported by Δ. Hence, $[\Delta, y]$ is supported by $\Delta \cap \Gamma$. Let $\rho:(\Delta-\Gamma) \xrightarrow{\cong} \Upsilon$ with Υ disjoint from Δ. Define $\sigma: \Delta \rightarrow \Delta \cup \Upsilon$ as follows:

$$
\sigma(a)= \begin{cases}a & a \in \Gamma, \\ \rho(a) & a \notin \Gamma .\end{cases}
$$

and let π be a finite permutation extending σ. Then, we obtain the following pullback square:

It's image under F is, therefore, a pullback square. Notice that

$$
\begin{aligned}
{[\Delta \cup \Upsilon, F(\iota)(y)] } & =[\Delta, y], & & \text { by definition, } \\
& =\pi \cdot[\Delta, y], & & \pi \text { fixes } \Delta \cap \Gamma \text { pointwise, } \\
& =[\pi \cdot \Delta, F(\pi \upharpoonright \Delta)(y)], & & \text { by definition, } \\
& =[\Delta, F(\sigma)(y)], & & \text { by definition. }
\end{aligned}
$$

Since $\left(\eta_{F}\right)_{\Gamma}$ is injective, $F(\iota)(y)=F(\sigma)(y)$ and, consequently, there is a unique $z \in F(\Delta \cap \Gamma)$ such that $F(\Delta \cap \Gamma \hookrightarrow \Delta)(z)=y$. Now let $x=F(\Delta \cap \Gamma \hookrightarrow \Gamma)(z)$. Then,

$$
\begin{aligned}
F(\Gamma \hookrightarrow \Delta \cup \Gamma)(x) & =F(\Gamma \hookrightarrow \Delta \cup \Gamma)(F(\Delta \cap \Gamma \hookrightarrow \Gamma)(z)), \\
& =F(\Delta \hookrightarrow \Delta \cup \Gamma)(F(\Delta \cap \Gamma \hookrightarrow \Delta)(z)), \\
& =F(\Delta \hookrightarrow \Delta \cup \Gamma)(y),
\end{aligned}
$$

so $[\Gamma, x]=[\Delta, y]$ indeed.

3 References

References

[1] P. Johnstone (2002), Sketches of an Elephant: A Topos Theory Compendium, Vol. 1. Oxford University Press.
[2] S. Mac Lane and I. Moerdijk (1994), Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer New York.
[3] A. Pitts (2013), Nominal Sets: Name and Symmetry in Computer Science. Cambridge University Press.
[4] J. Sterling and D. Morrison (2016), "Syntax and Semantics of Abstract Binding Trees". arXiv:1601.06298

