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1 Nominal Sets

1.1 Group Actions

Let G be a group. A G-set is a functor over G or, equivalently, a set X equipped with a left
action µ : G×X → X of G. An equivariant map between G-sets is a natural transformation
between them or, equivalently, a function between their underlying sets that respects the
action of G.

The category [G,Set] of G-sets and equivariant maps is an elementary topos because
it is a category of presheaves. Furthermore, it is boolean, so it supports classical higher
order logic. The subobject classifier is given by the discrete G-set B = {>,⊥} (a G-set
(X,µ) is discrete when µ = π2).

The exponentials in [G,Set] are the exponentials in Set, where the action of g ∈ G on
a function φ between G-sets is given by

(g · φ)(x) = g · (φ(g−1 · x)).

In the particular case of powersets, this amounts to mapping subsets S of a G-set X
to their image g · S = {g · x | x ∈ X}. If S is closed under the action of G, we say
S is equivariant. These subsets are important because they correspond precisely to the
subobjects of X. Also, quotients of G-sets by equivariant equivalence relations give rise to
quotients in [G,Set] in the obvious way.

1.2 Permutation Groups

Let A be a set. Then, SymA denotes the symmetric group on A and PermA, the subgroup
of SymA of finite permutations. A permutation π is said to be finite if {a ∈ A | π(a) 6= a}
is.

Given a, a′ ∈ A, we define (a a′) as the finite permutation that swaps a and a′ and leaves
everything else unchanged. Such a permutation is called a transposition. Transpositions
generate PermA. In fact, for any finite permutation π, we can choose its factors (a a′) so
that

π(a) 6= a 6= a′ 6= π(a′),

i.e. so that they are neither degenerate nor redundant.

1.3 Nominal Sets

Fix a countably infinite set A. The elements of A will be called atomic names.
Given a PermA-set X, we say that A ⊆ A supports x ∈ X if every permutation that

fixes each element in A also fixes x:

(∀a ∈ A)π(a) = a =⇒ π(x) = x.
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In terms of transpositions, A supports x if

(∀a1, a2 ∈ A−A)(a1 a2) · x = x.

A fundamental property of the set of finite supports of x is that it is closed under binary
intersections. In other words, given two finite sets A1 and A2, if both support x, then so
does A1∩A2. To see this, fix a1, a2 ∈ A− (A1∩A2). We want to show that (a1 a2) ·x = x.
Notice that a1 and a2 might be in A1 or in A2, so we cannot use our hypotheses directly.
However, since A1 and A2 are finite, we can find an “interpolant” a3 distinct from a1 and a2

that is neither in A1 nor A2 to factor the transposition as (a1 a2) = (a1 a3)◦(a2 a3)◦(a1 a3)
(this presupposes that a1 6= a2, but if that is not the case, we are done anyway). That the
goal follows from the hypotheses is now evident.

A nominal set is a PermA-set whose every element has finite support. For X a nominal
set and x ∈ X, we let suppX(x) be the least finite A ⊆ A supporting x (it exists because
of the closure property just mentioned). Nom is the full subcategory of [PermA,Set]
spanned by the nominal sets. In fact, it is a coreflective subcategory of [PermA,Set], i.e.
its associated inclusion functor has a right-adjoint given on PermA-sets X by

Xfs = {x ∈ X | x is finitely supported}.

Furthermore, it is a boolean Grothendieck topos, as we show next. For the proof, we shall
require a few basic results about nominal sets.

First, for any finite A ⊆ A, supp(A) = A, so the set Pf (A) of finite subsets of A is a
nominal set.

Second, for any PermA-set X, the function suppX : X → Pf (A) is equivariant, because
it is definable in the internal logic of [PermA,Set].

Third, if f : X → Y is an equivariant function, then it preserves support, i.e. if A
supports x ∈ X, then A supports f(x).

1.4 A Category of Contexts and Renamings

Let I be the category of finite subsets of A and injections between them, with identities
and compositions as in Set. We can think of Iop as a category of (naming) contexts and
renamings (contractions excluded).

Proposition 1. There is a functor I∗ : Nom→ [I,Set].

Proof. Every nominal set X gives rise to a presheaf F on Iop:

1. On contexts Γ ∈ I, we put F (Γ) = {x ∈ X | supp(x) ⊆ Γ}.

2. On renamings Γ
ρ−→ ∆ in I, we let F (ρ)(x) = π · x, where π ∈ PermA satisfies

π � Γ = ρ.
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Notice that every injection ρ : Γ → ∆ in I can be extended to a finite permutation π
on A, so that F (ρ) is always defined. Indeed, since Γ ∼= im ρ,

|im ρ− Γ| = |im ρ| − |Γ ∩ im ρ|,
= |Γ| − |Γ ∩ im ρ|,
= |im ρ− Γ|,

so there is a bijection ρ′ : (im ρ− Γ)→ (Γ− im ρ) and one can set

π(a) =


ρ(a) a ∈ Γ,

ρ′(a) a ∈ im ρ− Γ,

a otherwise

Furthermore, the behavior of F (ρ) does not depend on the choice of extension π. Indeed,
if π and π′ extend ρ, then π−1 ◦π′ fixes each element of Γ, which supports every x ∈ F (Γ),
so that (π−1 ◦ π′) · x = x and hence π′ · x = π · x.

Lastly, supp(F (ρ)(x)) = supp(π · x) = π · supp(x) ⊆ π · Γ ⊆ ∆, so F (ρ)(x) ∈ F (∆).
Since the choice of extension is irrelevant, it is easy to see that F is a functor. Thus,

we obtain a function I∗ : Nom → [I,Set]. This function extends to a functor as follows.
Consider an equivariant function f : X → Y . Define a natural transformation η : I∗(X)→
I∗(Y ) by setting ηΓ = f � I∗(X)(Γ). This is well defined because, for any x ∈ I∗(X)(Γ),

supp(f(x)) ⊆ supp(x) ⊆ Γ.

Naturality follows from the equivariance of f .

Proposition 2. The functor I∗ : Nom→ [I,Set] is full and faithful.

Proof. 1. I∗ is faithful: This is essentially due to the fact that, for any X ∈ Nom, every
x ∈ X is in some fiber of I∗(X). Indeed, let f, f ′ : X ⇒ Y be equivariant maps such
that f = f ′. Then, for each x ∈ X,

f(x) = I∗(f)supp(x)(x) = I∗(f
′)supp(x)(x) = f ′(x).

2. I∗ is full: Fix α : I∗(X) → I∗(Y ) in [I,Set]. Let f : X → Y be the function
x 7→ αsupp(x)(x). To see that it is equivariant, fix a finite permutation π and a point
x ∈ X. Notice that π restricts to an injection ρ : supp(x) → supp(π · x), since
π · supp(x) = supp(π · x). The associated naturality square implies that f(π · x) =
π · f(x). It remains to show that I∗(f) = α, so fix Γ ∈ I and x ∈ I∗(X)(Γ) and let
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ι : supp(x)→ Γ be the obvious inclusion. Then,

I∗(f)(x) = f(x),

= αsupp(x)(x),

= idA ·(αsupp(x)(x)),

= I∗(Y )(ι)(αsupp(x)(x)),

= αΓ(I∗(X)(ι)(x)),

= αΓ(idA ·x),

= αΓ(x).

2 The Schanuel Topos

2.1 A Site of Contexts and Renamings

Let F : I→ Set, Γ ∈ I and x ∈ F (Γ). We say that a subcontext ∆
ρ−→ Γ of Γ supports x

whenever renamings of Γ that agree on ∆ act equally on x:

ρ1 ◦ ρ = ρ2 ◦ ρ =⇒ ρ1 · x = ρ2 · x

for every Υ and ρ1, ρ2 : Γ ⇒ Υ in I. For example, ρ supports every x in the image of F (ρ),
since then ρ1 · x = ρ1 · ρ · y = ρ2 · ρ · y = ρ2 · x for some y ∈ F (∆) whenever ρ1 ◦ ρ = ρ2 ◦ ρ.

If ∆
ρ−→ Γ supports x, we would like to say that x lies in the fiber of ∆ (modulo

permutation of names). In other words, we would like there to be a canonical way of
strengthening x to ∆ along ρ. The presheaves on Iop for which this is always possible are
the sheaves for the atomic topology on Iop, and the category of all such sheaves is called
the Schanuel Topos.

Recall that the atomic topology on Iop is given by the family of all nonempty sieves on
objects of Iop. This family is a Grothendieck topology if, and only if, we can complete any
cospan in Iop to a commutative square or, equivalently, if we can complete any span in I
to a commutative square, but this is indeed the case:

Υ Γ

∆ (∆− im ρ) + Υ + (Γ− imσ)

σ

ρ ι2

ι1

where ι1 = id∆−im ρ +ρ−1 and i2 = idΓ−imσ +σ−1.
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We say that every morphism in Iop covers because the atomic topology on Iop is gener-
ated by the singleton families of morphisms. To see this, consider a nonemtpy sieve S on
∆ ∈ Iop. Since it is nonempty, it contains a map ∆

ρ−→ Γ in I such that

|Γ| = min{|Θ| : Θ ∈ I, S(Θ) 6= ∅}.

Consider any Θ ∈ I and σ ∈ S(Θ). Then,

|Γ− im ρ| = |Γ| − |im ρ|,
|Γ| − |∆|,
≤ |Θ| − |∆|,
= |Θ| − |imσ|,
= |Θ− imσ|,

so σ factors through ρ and, consequently, σ is in the sieve generated by ρ. Conversely, if
σ : ∆→ Θ is a map in I that factors through ρ, then σ = y(τ)(ρ) for some τ : Γ→ Θ in I.
Since ρ ∈ S(Γ) and S is a subpresheaf of y(∆), it follows that σ ∈ S(Θ).

Notice that the notion of support corresponds to that of matching family for the atomic
topology. More precisely, for each F : I→ Set and ∆

ρ−→ Γ in I, we have a bijection

Nat(S, F ) ∼= {x ∈ F (Γ) | ρ supports x},

where S is the sieve generated by ρ, as in Yoneda’s Lemma. Explicitly, if x ∈ Γ is supported
by ρ, then we let

φΘ(σ) = τ · x,

where τ : ∆ → Θ is such that τ ◦ ρ = σ. Notice that τ exists by definition of S, and the
meaning of φΘ(σ) is independent of τ precisely because ρ supports x.

Conversely, if φ : S → F , then we let x = φΓ(ρ), which is supported by ρ because φ is
natural. Indeed, for any τ : Γ→ Θ, naturality implies that τ · x = φΘ(τ ◦ ρ), so that τ ◦ ρ
determines x.

These constructions are mutual inverses. Indeed, let x ∈ F (Γ) supported by ρ and let φ
be the matching family corresponding to x. Then, φΓ(ρ) = idΓ ·x = x. Now let x = ψΓ(ρ)
for some matching family ψ. Then, φΘ(σ) = τ · x = τ · ψΓ(ρ) = ψΘ(τ ◦ ρ) = ψΘ(σ), where
σ = τ ◦ ρ.

2.2 The Schanuel Topos

We have defined the Schanuel Topos as the category of sheaves on Iop for the atomic
topology. Next, we characterize its objects in more detail.

Fix a functor F : I→ Set. Notice, first, that the amalgamations of a matching family
φ : S → F on the sieve S generated by ∆

ρ−→ Γ correspond precisely to the preimages
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of x = φΓ(ρ) under the action of ρ. To see this, let ψ be an amalgamation of φ and
y = ψ∆(id∆). Then, ρ · y = ψΓ(ρ ◦ id∆) = φΓ(ρ) = x. Conversely, let ρ · y = x and
ψ = (−) · y. Then, ψΘ(σ) = σ · y = τ · ρ · y = τ · x = φΘ(σ), where σ = τ ◦ ρ. These two
mappings are inverses. Indeed, ψ∆(id∆) = id∆ ·y. In the other direction, (−)·ψ∆(id∆) = ψ,
since σ · ψ∆(id∆) = ψΘ(σ ◦ id∆) for every σ : ∆→ Θ.

Now, recall that F satisfies the separation condition for S if, and only if, every matching
family on S has at most one amalgamation. In particular, F (ρ) must be injective (recall
that ρ supports everything in the image of F (ρ)). Recall also that F satisfies the sheaf
condition for S if, and only if, every matching family on S has a unique amalgamation. In
particular, the points supported by ρ must lie in the image of F (ρ). But if that is the case,
injectivity is not only necessary but sufficient for separation. Consequently, F satisfies the
sheaf condition for S if, and only if, F (ρ) is injective and its image contains every point
supported by ρ. In other words,

Proposition 3. F : I → Set is a sheaf for the atomic topology on Iop if, and only if,
whenever ∆

ρ−→ Γ in I supports x ∈ F (Γ), there is a unique y ∈ F (∆) such that ρ · y = x.

Next, we provide another characterization of sheaves that will come in handy when
describing the essential image of I∗ : Nom → [I,Set]. It corresponds to the fact that the
finite supports of a point in a PermA-set are closed under binary intersection.

Proposition 4. F : I→ Set is a sheaf for the atomic topology on Iop if, and only if, F is
pullback-preserving.

Proof. In the proof, we shall make use of the fact that the inclusion of I into Set creates
pullbacks.

Suppose that F is pullback-preserving. Suppose, furthermore, that ∆
ρ−→ Γ in I

supports x ∈ F (Γ). Consider the pullback square

∆ Γ

Γ (Γ− im ρ) + ∆ + (Γ− im ρ)

ρ

ρ ι2

ι1

where ι1 and ι2 are defined as before. Since F preserves pullbacks and ρ supports x, there
is a unique y ∈ F (∆) such that ρ · y = x. Hence, F is a sheaf.

Conversely, suppose that F is a sheaf. Fix a pullback square

∆ Γ

Θ Υ

ρ

σ τ

ξ
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Fix also x ∈ F (Γ) and y ∈ F (Θ) such that τ · x = ξ · y. We shall show that ρ supports x,
so that there is a unique z ∈ F (∆) such that ρ · z = x. Notice that such a z also satisfies
σ · z = y, since ξ · σ · z = τ · ρ · z = τ · z = ξ · y and F (ξ) is injective.

Now fix two maps α, β : Γ ⇒ Γ′ such that α ◦ ρ = β ◦ ρ. We claim that α · x = β · x.
To see this, notice that we can extend the previous diagram as follows:

∆ Γ Ξ

Θ Υ (Υ− im τ) + Ξ

ρ

σ

α

β
τ ι

ξ

γ

δ

where ι ◦ α = γ ◦ τ , ι ◦ β = γ ◦ τ and γ ◦ ξ = δ ◦ ξ. Here, ι is the coproduct inclusion of Ξ
and γ and δ are defined as follows:

γ(a) =

{
α(τ−1(a)) a ∈ im τ

a otherwise

δ(a) =

{
β(τ−1(a)) a ∈ im τ

a otherwise

Then, ι · α · x = γ · τ · x = γ · ξ · y = δ · ξ · y = δ · τ · x = ι · β · x. Since F (ι) is injective,
α · x = β · x, as needed.

2.3 The Left-Adjoint

Proposition 5. The inclusion I∗ : Nom ↪→ [I,Set] has a left-adjoint, which we denote by
I∗ : [I,Set]→ Nom.

Proof. Every presheaf F on Iop gives rise to a nominal set X:

1. The wide subcategory of I consisting of the canonical inclusions is a directed set.
Take X to be the colimit of the restriction of F to this directed set. Because it is
directed, the colimit can be explicitly described as the quotient of

∑
Γ∈A F (Γ) by the

equivalence relation

(Γ, x) ∼ (∆, y) ⇐⇒ (∃Υ ⊇ Γ ∪∆)F (Γ ↪→ Υ)(x) = F (∆ ↪→ Υ)(y).

We will write [Γ, x] for the equivalence class of (Γ, x).

2. Take the action of π ∈ PermA on [Γ, x] to be

π · [Γ, x] = [π · Γ, F (π � Γ)(x)].
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This action is well defined. Indeed, suppose that (Γ, x) ∼ (∆, y). Let Υ ⊇ Γ∪∆ such
that F (Γ ↪→ Υ)(x) = F (∆ ↪→ Υ)(y). Then, we have that

Γ π · Γ

Υ π ·Υ

π�Γ

π�Υ

and similarly for ∆, so that (π · Γ, F (π � Γ)(x)) ∼ (π ·∆, F (π � ∆)(x)).

3. Let [Γ, x] ∈ X and suppose (∀a ∈ Γ)π(a) = a. Then, π · A = A and π � Γ = idΓ, so
π · [Γ, x] = [Γ, x]. Hence, Γ supports [Γ, x].

It is not hard to show that the family of maps x ∈ F (Γ) 7→ [Γ, x] indexed by Γ ∈ I gives rise
to a natural transformation ηF : F → I∗(X). We claim that, for any nominal set Y and
natural transformation α : F → I∗(Y ), there is a unique equivariant function α̂ : X → Y
such that α = I∗(α̂) ◦ ηF :

F

I∗(X) I∗(Y )

X Y

ηF
α

α̂

For uniqueness, notice that, if such a α̂ existed, then we’d have

α̂[Γ, x] = (I∗(α̂))Γ((ηF )Γ(x)),

= αΓ(x)

For existence, notice that such an assignment is well defined, for if (Γ, x) ∼ (∆, y), then,
for some Υ ⊇ Γ ∪∆,

αΓ(x) = idA ·αΓ(x),

= I∗(Y )(Γ ↪→ Υ)(αΓ(x)),

= αΥ(F (Γ ↪→ Υ)(x)),

= αΥ(F (∆ ↪→ Υ)(y)),

= I∗(Y )(∆ ↪→ Υ)(α∆(y)),

= idA ·α∆(x),

= α∆(x).
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Notice, furthermore, that it is equivariant, since for any π ∈ PermA,

π · αΓ(x) = I∗(Y )(π � Γ)(αΓ(x)),

= απ·Γ(F (π �)(x)).

Proposition 6. Nom is equivalent to the Schanuel topos.

Proof. It suffices to show that the Schanuel topos is the essential image of I∗ : Nom ↪→
[I,Set] which, as we have seen, is full and faithful. So fix a sheaf F . Let X = I∗(F ). We
claim that ηF is an isomorphism. Fix Γ ∈ I.

Notice, first, that (ηF )Γ is injective. Indeed, if (Γ, x) ∼ (Γ, x′) for some x, x′ ∈ F (Γ),
then F (Γ ↪→ Υ)(x) = F (Γ ↪→ Υ)(x′) for some Υ ⊇ Γ; since F is a sheaf, it follows that
x = x′.

Next, we show that (ηF )Γ is surjective. Suppose [∆, y] is supported by Γ. We also know

that [∆, y] is supported by ∆. Hence, [∆, y] is supported by ∆ ∩ Γ. Let ρ : (∆− Γ)
∼=−→ Υ

with Υ disjoint from ∆. Define σ : ∆→ ∆ ∪Υ as follows:

σ(a) =

{
a a ∈ Γ,

ρ(a) a /∈ Γ.

and let π be a finite permutation extending σ. Then, we obtain the following pullback
square:

∆ ∩ Γ ∆

π ·∆

∆ ∆ ∪Υ

σ

π�∆

ι

It’s image under F is, therefore, a pullback square. Notice that

[∆ ∪Υ, F (ι)(y)] = [∆, y], by definition,

= π · [∆, y], π fixes ∆ ∩ Γ pointwise,

= [π ·∆, F (π � ∆)(y)], by definition,

= [∆, F (σ)(y)], by definition.

Since (ηF )Γ is injective, F (ι)(y) = F (σ)(y) and, consequently, there is a unique z ∈ F (∆∩Γ)
such that F (∆ ∩ Γ ↪→ ∆)(z) = y. Now let x = F (∆ ∩ Γ ↪→ Γ)(z). Then,

F (Γ ↪→ ∆ ∪ Γ)(x) = F (Γ ↪→ ∆ ∪ Γ)(F (∆ ∩ Γ ↪→ Γ)(z)),

= F (∆ ↪→ ∆ ∪ Γ)(F (∆ ∩ Γ ↪→ ∆)(z)),

= F (∆ ↪→ ∆ ∪ Γ)(y),
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so [Γ, x] = [∆, y] indeed.
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