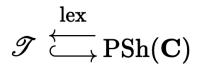
Topos Theory Seminar, Carnegie Mellon University

Giraud's Theorem

Rio Alvarado



December 8, 2022

Outline

- Basic Theoretical Background
- 1 The Goal
- **2** Preliminaries
 - 2.1 Size Issues
 - 2.2 Grothendieck Topologies, Sheaves & Topoi
 - 2.3 Localization & Sheafification
 - 2.4 Equivalent Characterizations of Topoi
- **3** Going Forward: (2) \Rightarrow (3)
 - 3.1 Introducing the Giraud Axioms
- **4** Giraud's Theorem $[(3) \Rightarrow (1)]$
 - 4.1 The Fully Unpacked Theorem
 - 4.2 Reframing
 - 4.3 A Necessary Lemma
 - 4.4 The Final Step

Theoretical Background: Basic Definitions

Cocompleteness

A category is called **Cocomplete** if every diagram in it has a colimit.

Presheaves

Given small category **C** we call a functor $F : \mathbf{C}^{\text{op}} \to \text{Set a}$ **Presheaf**. Replace Set by any category *S* and it becomes an *S*-valued presheaf. The category of presheaves on **C** is denoted $\hat{\mathbf{C}}$ or $PSh(\mathbf{C})$.

Finite Presentability

Let $C \in obj(\mathbf{C})$, then we say *c* is **Finitely Presentable** if its corresponding Hom-functor, $Hom(C, -) : \mathbf{C} \rightarrow \mathbf{Set}$, preserves (commutes with) directed colimits.

Definition

Let λ be a regular cardinal.

- A poset *P* is λ-Directed when every *S* ⊆ *P*, |*S*| < λ has a join (upper bound). A diagram whose set of morphisms is a λ-directed poset is a λ-directed diagram.
- An object C ∈ obj(C) is λ-Presentable when Hom(C, −) preserves λ-directed colimits.

Definition

A category **C** is **Locally** λ **-Presentable** if it is cocomplete and has a set $\mathscr{A} \subseteq \operatorname{obj}(\mathbf{C})$ of λ -presentable objects in that every $C \in \operatorname{obj}(\mathbf{C})$ is a λ -directed colimit of elements in \mathscr{A} .

C is **Locally Presentable** or simply Presentable if it is locally λ -presentable for some λ .

Throughout, "topos" will always refer to a Grothendieck topos.

Theorem (Giraud)

Let \mathscr{X} be any category. Then the following conditions are equivalent:

- **1** The category \mathscr{X} is a topos; that is, equivalent to the category of sheaves on a site.
- 2 The category *X* is a left exact localization of PSh(C) for some small category C.
- **3** *Giraud's Axioms are satisfied. (To be stated.)*

In this talk we will recall the direction $1 \Rightarrow 2$ which is classical from sheafification; then prove $2 \Rightarrow 3$ and conclude with the main point of showing $3 \Rightarrow 1$.

Throughout we will consider throughout our category **C** to be a small category in the sense that its hom set is indeed a set (as opposed to a proper class) and similarly with our set of objects.

Roughly, a set is just that, and a proper class is "too big". Rigorously, we have:

Set vs. Proper Class

Given a Grothendieck universe \mathcal{U} , we say the **Sets** are elements of \mathcal{U} , while **Proper Classes** are *subsets* of \mathcal{U} . Thus, an item is small when it is an element of \mathcal{U} .

Grothendieck Topology

A Grothendieck Topology on category **C** is a function *J* which assigns to each $C \in obj(\mathbf{C})$ a collection J(C) of sieves on *C* such that:

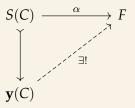
- The maximal sieve $\{f \mid cod(f) = C\}$ is in J(C);
- (Stability) if $S \in J(C)$ then $h^*(S) \in J(D)$ for any arrow $h: D \to C$;
- (Transitivity) if $S \in J(C)$ and R is any sieve on C such that $h^*(R) \in J(D), \forall h : D \to C$ in S then $R \in J(C)$.

Sites

A Site (\mathbf{C}, J) is a category equipped a Grothendieck topology.

Sheaves & Topoi

A presheaf *F* is a **Sheaf** when for all covering sieves *S* and all natural transformations $\alpha : S \to F$ there exists a unique extension to the representable functor of **C**. That is, we have the following diagram:



We call category \mathscr{X} a **(Grothendieck) Topos** if it can be realized as a category of sheaves on some Grothendieck site **C**, which may be written as $Shv(\mathbf{C})$.

Localizations

Definition

We call a functor $F : \mathbf{C} \to \mathbf{D}$ a **Localization** if it admits a fully faithful right adjoint. If the left adjoint preserves small limits then *F* is **Exact**.

Proposition

The category Shv(C) *is a left exact localization of* PSh(C)*.*

Note the above proposition is $1 \Rightarrow 2$ in Giraud's Theorem.

Effective Epimorphism

Given $f \in \text{Hom}_{\mathbb{C}}(X, Y)$ we say it is an **Effective Epimorphism** if *Y* is the coimage of *f*. Equivalently, for the kernel pair $X \times_Y X$, we have $X \times_Y X \rightrightarrows X \xrightarrow{f} Y$ as a coequalizer. Alternatively, $\forall C \in \text{obj}(\mathbb{C})$, $\text{Hom}_{\mathbb{C}}(Y, C) \cong \{u \in \text{Hom}_{\mathbb{C}}(X, C) \mid u \circ \pi = u \circ \pi'\}$ for $\pi, \pi' : X \times_Y X \to X$.

Sheafification

The discussion herein briefly sketches a proof of the preceding proposition and thus a step in our overall proof. See MacLane and Moerdijk 2012 for full details.

Begin with the inclusion functor $i : \text{Shv}(\mathbf{C}) \hookrightarrow \text{PSh}(\mathbf{C})$ then the claim is it has left adjoint $\mathfrak{a} : \text{PSh}(\mathbf{C}) \to \text{Shv}(\mathbf{C})$ where $\mathfrak{a} = \eta \circ \eta$ for $\eta : \text{PSh}(\mathbf{C}) \to \text{PSh}(\mathbf{C})$ such that, for any presheaf *F*:

$$\eta(F)(C) = \operatorname{colim}_{R \in J(c)} \operatorname{Match}(R, F).$$

For matching families of the cover *R* of $C \in obj(\mathbf{C})$.

Under this construction $\eta(F)$ is a separated presheaf and we may invoke the lemma that any such separated presheaf is a sheaf. Finally, it is easy enough to show that η preserves small limits. (As Hom(R, -) preserves limits, filtered colimits commute with finite limits in Set and limits in PSh(\mathbf{C}) are computed point-wise.)

Proposition

Let \mathscr{X} be a category, then the following are equivalent:

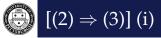
- **1** The category \mathscr{X} is a Grothendieck topos, that is, equivalent to the category of sheaves on a site.
- **2** The category \mathscr{X} is a lex localization of presheaves for some small category.

Theorem (Giraud)

Let \mathscr{X} be any category. Then the following conditions are equivalent:

- **1** The category \mathscr{X} is a topos.
- *Q* The category *X* is a left exact localization of PSh(C) for some small category C.
- **3** *Giraud's Axioms are satisfied:*
 - **()** The category \mathscr{X} is presentable.
 - **(f)** Colimits in \mathscr{X} are universal.
 - Coproducts in \mathscr{X} are disjoint.
 - \heartsuit Equivalence relations in $\mathscr X$ are effective.

Thus, our next goal is to show that a lex localization of presheaves has exactly these four properties.



Proposition (i)

Let $L : PSh(\mathbf{C}) \to \mathscr{X}$ be a lex localization, then \mathscr{X} is presentable.

See Borceux 1994 for a proof in several steps or Adamek and Rosicky 1994 Theorem 2.26.

$[(2) \Rightarrow (3)] (ii)$

Definition

Let \mathscr{X} be a category with pullbacks and small colimits. Then given any morphism $f: T \to S$ we have the adjunction

$$\mathscr{X}_{/S} \xrightarrow[\leftarrow]{f \circ -}{f^*} \mathscr{X}_{/T}.$$

We say **Colimits in** \mathscr{X} **are Universal** when the pullback functor $f^* : \mathscr{X}_{/S} \to \mathscr{X}_{/T}$ preserves colimits.

Proposition (ii)

Let $PSh(\mathbf{C}) \xrightarrow{L} \mathscr{X}$ be a lex localization, then colimits in \mathscr{X} are universal.

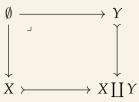
Proof.

Note colimits in PSh(**C**) are universal (as they're computed point-wise in Set). Now apply the right adjoint of *L* to f^* and recall that lex localizations are stable under slice constructions so we get that $f^* : PSh(\mathbf{C})_{/Y} \to PSh(\mathbf{C})_{/X}$ preserves colimits. Thus, if we apply *L* to f^* we conclude $f^* : \mathscr{X}_{/Y} \to \mathscr{X}_{/X}$ preserves colimits.

$[(2) \Rightarrow (3)]$ (iii)

Definition

Let **C** be a category with coproducts and an initial object \emptyset . The coproducts in **C** are **Disjoint** if we have the following pullback diagram:



and we have that $X \times_{X \coprod Y} Y$ is the initial object in **C**.

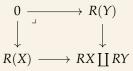
Proposition (iii)

Let $L : PSh(C) \to \mathscr{X}$ be a lex localization, then coproducts in \mathscr{X} are disjoint.

Proof of Proposition (iii)

Proof.

Let $X, Y \in obj(\mathscr{X})$ and apply the right adjoint R of L to obtain (using the fact that coproducts in $PSh(\mathbb{C})$ are disjoint (because again they are computed point-wise in Set and in set and coprods in Set are just disjoint unions) the diagram:



Now we apply *L* and obtain:

$$L(0) \longrightarrow LR(Y)$$

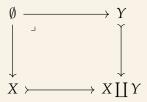
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$LR(X) \longrightarrow L(RX \coprod RY)$$

Proof of Proposition (iii) [Cont.]

Proof.

So by left exactness we obtain finally:

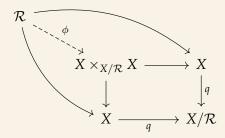


And we see that the coproducts are indeed disjoint.

$[(2) \Rightarrow (3)] (iv)$

Definition

Given equivalence relation ${\mathcal R}$ for a category ${\mathscr X}$ with diagram:



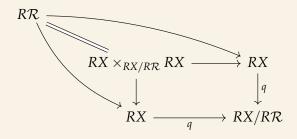
if ϕ is an equality then $\mathcal R$ is an Effective Equivalence Relation.

Proposition (iv)

Let $L : PSh(C) \to \mathscr{X}$ be a lex localization, then equivalence relations in \mathscr{X} are effective.

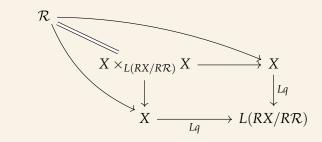
Proof.

Note first that equivalence relations in Set are effective because we always have pullbacks in Set. Second, it follows that equivalence relations in $PSh(\mathbf{C})$ are effective. Let \mathcal{R} be an equivalence relation, then we apply the right adjoint R of L and obtain the following diagram in presheaves:



Proof.

We now apply *L* (which as a left adjoint preserves colimits and as a lex functor preserves pullbacks) and obtain:



From which we conclude the equivalence relations in $\mathscr X$ are effective.

Definition

Let \mathscr{X} be a pretopos which admits infinite coproducts. A collection of morphisms $\{f_i : U_i \to X\}_{i \in I}$ is a **Covering** if it induces an effective epimorphism $\coprod U_i \to X$.

This is equivalent to requiring that for every subobject $X_0 \subseteq X$ for which f_i factors through X_0 we have $X_0 = X$.

Theorem (Giraud)

Let \mathscr{X} *be any category. Then the following conditions are equivalent:*

- The category X is a topos; hence equivalent to the category of Shv(C) for C a small category with a Grothendieck topology.
- **2** The category \mathscr{X} is a left exact localization of PSh(C).
- **3** Giraud's Axioms are satisfied:
 - **()** Equivalence relations in \mathscr{X} are effective.
 - **(b)** Coproducts in \mathscr{X} are disjoint (and \mathscr{X} admits small coproducts).
 - **(1)** The collection of effective epimorphisms in \mathscr{X} is closed under pullback.
 - The formation of coproducts commutes with pullback: that is, for every morphism $f : X \to Y$ in \mathscr{X} , the pullback functor $f^* : \mathscr{X}_{/Y} \to \mathscr{X}_{/X}$ preserves coproducts.
 - ♥ There exists a set of objects \mathscr{U} of \mathscr{X} which generate \mathscr{X} as: $\forall X \in \operatorname{obj}(\mathscr{X})$ there exists covering $\{U_i \to X\}$, where $U_i \in \mathscr{U}$.

Reframing The Implication

We will prove a slightly modified statement, with the additional assumption that \mathscr{X} is closed under finite limits.

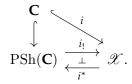
Theorem $(3) \Rightarrow (1)$

Let \mathscr{X} be a category satisfying Giraud's Axioms and $\mathbf{C} \subseteq \mathscr{X}$ be a full subcategory of \mathscr{X} which is closed under finite limits and generates \mathscr{X} (in the sense of \mathfrak{P}). Say that a family of morphisms $\{U_i \to X\}$ in \mathbf{C} is a covering if is a covering in \mathscr{X} (as defined above). Then:

- a The collection of covering families determines a Grothendieck topology on *C*.
- For every object Y ∈ obj(X) let h_Y : C^{op} → Set denote the functor represented by Y on the subcategory C, given by h_Y(X) = Hom_X(X, Y). Then h_Y is a sheaf with respect to the Grothendieck topology above.
- *C* The construction Y → h_Y induces an equivalence of categories h : X → Shv(C).

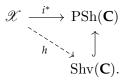
We then note that this \mathfrak{G} implies \mathfrak{P} (the statement that \mathscr{X} is a topos with finite limits) then \mathfrak{P} vacuously implies our original \mathfrak{I} and thus if we show $\mathfrak{G} \Rightarrow \mathfrak{P}$ we conclude our proof.

Note using the inclusion of full sub-category **C** of \mathscr{X} and the fact that $PSh(\mathbf{C})$, \mathscr{X} are presentable we obtain the diagram:



Where for any $X \in obj(\mathscr{X})$ we have $i^*(X) : \mathbb{C}^{op} \to Set$ defined as $obj(\mathbb{C}^{op}) \ni D \mapsto \operatorname{Hom}_{\mathscr{X}}(i(D), X) = h_X \circ i$, for the representable presheaf h_X from the Yoneda Lemma.

Then $h_X \circ i$ is a sheaf iff we have *h* as in the diagram



So then this *h* defined as $obj(X) \ni Y \mapsto h_Y \circ i$ is the precise construction of the functor in our theorem, whose image we write more simply as just h_Y .

Proof.

(a) Consider $\{U_i \to X\}$ in **C** and $Y \xrightarrow{f} X$ in **C**. We wish to show that the collection projection maps $\{U_i \times_X Y \to Y\}$ is also a covering. That is, given that $\coprod U_i \to X$ is an effective epi in \mathscr{X} wts that the induced map $\coprod (U_i \times_X Y) \to Y$ is the same. This is so, as (iii), (iv) assure us that pulling back along *f* preserves coproducts and being an effective epi.

Suppose we have a coverings $\{U_i \to X\}$ and $\{V_{i,j} \to U_i\}$ in **C**. Now wts that the composite maps $\{V_{ij} \to X\}$ are also a covering. Let $X_0 \subseteq X$ be a subobject such that each $V_{i,j} \to X$ factors through X_0 . Then $V_{i,j} \to U_i$ factors through $X_0 \times_X U_i, \forall i$. As $V_{i,j}$ cover U_i , each of the $U_i \to X$ factors through X_0 , i.e. $X_0 \times_X U_i = U_i$. And as $\{U_i \to X\}$ cover X we deduce $X_0 = X$.

Finally, note the collection $\{f_i : U_i \to X\}$ is a covering when f_i admits a section, because then f_i is itself an effective epi in **C**.

$(3') \Rightarrow (1')$ [Cont.]

Proof.

b Fix $Y \in obj(\mathscr{X})$; wts that $h_Y : \mathbb{C}^{op} \to Set$ is a sheaf. Let $\{U_i \to X\}$ be any covering of $X \in obj(\mathbb{C})$, so wts that

$$h_Y(X) \to \prod h_Y(U_i) \rightrightarrows \prod h_Y(U_i \times_X U_j)$$

is an equalizer. Expanding the above mapping yields:

$$\operatorname{Hom}_{\mathscr{X}}(X,Y) \to \operatorname{Hom}_{\mathscr{X}}(\coprod_{i} U_{i},Y) \rightrightarrows \operatorname{Hom}_{\mathscr{X}}(\coprod_{i,j} U_{i} \times_{X} U_{j},Y)$$

and as $\{U_i \to X\}$ is a covering it follows that $\coprod_i U_i \to X$ is an effective epi. So we're done as the map below is an iso by (iv).

$$\coprod_{i,j} (U_i \times_X U_j) \to (\coprod_i U_i) \times_X (\coprod_j U_j)$$

A Necessary Lemma

Lemma

Let $\{U_i \to X\}_{i \in I}$ be a covering in \mathscr{X} . Then the induced map $\prod h_{U_i} \to h_X$ is an effective epimorphism in $Shv(\mathbf{C})$.

Proof.

Consider a section $s \in h_X(C)$, $C \in obj(\mathbb{C})$ given by morphism $C \to X$ in \mathscr{X} . As $\{U_i \to X\}$ is a covering the induced map $\coprod U_i \to X$ is an effective epi in \mathscr{X} . By (iii), (iv) it follows that $\{U_i \times_X C \to C\}$ is also a covering in \mathscr{X} . And as $obj(\mathbb{C})$ generates \mathscr{X} , each $U_i \times_X C$ admits a covering $\{V_{i,j} \to U_i \times_X C\}$ where $V_{i,j} \in obj(\mathbb{C})$.

Then the composite maps collection $\{V_{i,j} \to C\}$ is a covering in **C**. By construction $\forall (i, j)$ the image $s_{i,j} \in h_X(V_{i,j})$ of *s* belongs to the image of $h_{U_i}(V_{i,j}) \to h_X(V_{i,j})$. So, allowing *C*, *s* to vary we conclude $\{h_{U_i} \to h_X\}$ is a covering of h_X in Shv(**C**).

Proof.

We want to show that $\coprod_i h_{U_i} \to h_X$ is an effective epi. To this end we we value the map at some arbitrary $\alpha \in H_X(C), C \in \mathbf{C}$. Then cover $U_i \times_X C$ by some $V_{i,j} \in \mathbf{C}$ from which we can map $\alpha \in h_X(C)$ to $h_X(V_{i,j})$ and then we can pull back to $h_{U_i}(V_{i,j}), \forall i, j$. Thus, since α, C we arbitrary we see that the desired condition on the codomain h_X being a coequalizer and we have an effective epi.

The Final Step: $[(3') \Rightarrow (1')](c)$

Proof.

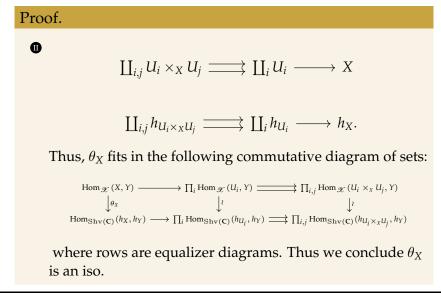
C First we wish to show that $h : \mathscr{X} \to \text{Shv}(\mathscr{X})$ is fully faithful. Meaning that

 $\forall X, Y \in \operatorname{obj}(\mathscr{X}), \theta_X : \operatorname{Hom}_{\mathscr{X}}(X, Y) \to \operatorname{Hom}_{\operatorname{Shv}(\mathbf{C})}(h_X, h_Y)$

is bijective. Fix *Y* and say that *X* is *good* if θ_X is bijective. We know proceed in several steps:

- Every $X \in obj(\mathbf{C})$ is good by the Yoneda Lemma.
- Suppose that $X \in obj(\mathscr{X})$ admits covering $\{U_i \to X\}$. We claim if each U_i and fiber product $U_i \times_X U_j$ is good then so is *X*. To show this, note that $\coprod_i U_i \to X$, $\coprod_i h_{U_i} \to h_X$ are effective epis in \mathscr{X} , $Shv(\mathbf{C})$, respectively, by the Lemma. And as both categories satisfy (iv) and *h* preserves finite limits we obtain coequalizer diagrams:

The Final Step: $[(3') \Rightarrow (1')](c)$



Proof.

- Now let $X \in obj(\mathbb{C})$, $U \subseteq X$. Then we claim U is good. To prove this, pick a covering $\{U_i \rightarrow U\}$ where U_i belongs to \mathbb{C} . Since here we assume \mathbb{C} is closed under finite limits each fiber product $U_i \times_U U_j \cong U_i \times_X U_j$ belongs to \mathbb{C} (where we use subobject embedding, essentially pulling back along it). Thus from (I) the objects $U_i, U_i \times_X U_j$ are good and so U is good by (II).
- Let $X \in obj(\mathbb{C})$ and pick covering $\{U_i \to X\}, U_i \in obj(\mathbb{C})$. Then every fiber product $U_i \times_X U_j$ is a subobject of $U_i \times U_j$ in \mathbb{C} and therefore is good by (III), so we conclude X is good by (II).

Thus $h: \mathscr{X} \to \operatorname{Shv}(\mathscr{X})$ is indeed fully faithful.

The Final Step: $[(3') \Rightarrow (1')](c)$

Proof.

We now wish to show that *h* is preserves coproducts. We first then apply the Lemma to the case where $I = \emptyset$ and so deduce that *h* maps the initial object of \mathscr{X} to that in Shv(**C**). Now fix $\{X_i\} \in obj(\mathscr{X})$ with coproduct *X*, then wts that $\theta : \coprod h_{X_i} \to h_X$ is an iso in **C**. Our Lemma says tells us that θ is an effective epi and so it suffices to show that θ is too a mono, i.e.

$$\coprod h_{X_i} \xrightarrow{\delta} (\coprod h_{X_i} \times_{h_X} \coprod h_{h_{X_j}})$$

is an iso. Recall now that $\text{Shv}(\mathbf{C})$ satisfies (iv) and *h* is right exact (finite colimit preserving) so we may rewrite $\text{cod}(\delta) = \coprod_{i,j} h_{X_i \times _X X_j}$. Thus we must show that $h_{X_i} \to h_{X_i \times _X X_j}$ are isos and $h_{X_i \times _X X_j}$ is an initial object of $\text{Shv}(\mathbf{C}), i \neq j$. These follow from that fact that coproducts in \mathscr{X} are disjoint by (iii) and that *h* preserves monos.

Proof.

Now we wish to show that *h* is essentially surjective. Select $\mathscr{F} \in \operatorname{Shv}(\mathbf{C})$; wts that \mathscr{F} belongs to the essential image of *h*. First, consider the case where $\mathscr{F} \subseteq h_X$ for some $X \in \operatorname{obj}(\mathscr{X})$ and pick effective epi $\prod h_{C_i} \to \mathscr{F}, C_i \in \mathbb{C}$. Set $U := \prod_i C_i$ to obtain an effective epi $h_U \to \mathscr{F}$ for some $U \in \mathscr{X}$ then $h_{U} \to \mathscr{F} \hookrightarrow h_{X}$ arises from $u \in \operatorname{Hom}_{\mathscr{X}}(U, X)$ and since \mathscr{X} is a pretopos *u* factors as $U \xrightarrow{u'} Y \xrightarrow{u''} X$ for effective epi *u'* and mono *u*["]. (Note for the induced maps: $h_U \xrightarrow{u'} h_Y$ is an effective epi in Shv(**C**) by our Lemma and $h_Y \xrightarrow{u''} X$ is a mono in Shv(**C**) as h is lex). As images are unique in a pretopos we conclude that $\mathscr{F} \cong h_{\mathcal{V}}$.

Now suppose that \mathscr{F} is any sheaf on **C** and again pick effective epi $h_U \to \mathscr{F}, U \in \operatorname{obj}(X)$.

The Final Step: $[(3') \Rightarrow (1')](c)$

Proof.

In this case, the fiber product $h_U \times_{\mathscr{F}} h_U$ is a sheaf on **C** which can be viewed as a subobject of $h_U \times h_U = h_{U \times U}$. By the same logic as before we can pick an iso $h_U \times_{\mathscr{F}} h_U \cong h_R$, $R \in obj(\mathscr{X})$. Now consider the canonical bijection

 $\forall Y \in \operatorname{obj}(\mathscr{X}), \operatorname{Hom}_{\mathscr{X}}(Y, R) \cong \operatorname{Hom}_{\operatorname{Shv}(\mathbf{C})}(h_Y, h_u \times_{\mathscr{F}} h_U)$

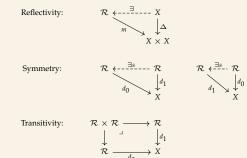
so we can view *R* as an equivalence relation on *U* in \mathcal{X} .

Thus by (i) this equivalence relation is effective. That is, there exists an effective epi $U \to X$ in \mathscr{X} with $R = U \times_X U$ (as subobjects of $U \times U$). Therefore we apply our Lemma to the covering $\{U \to X\}$ and finally obtain the isomorphism:

 $h_X \cong \operatorname{Coeq}(h_R \rightrightarrows h_U) \cong \operatorname{Coeq}(h_U \times_{\mathscr{F}} h_U \rightrightarrows h_U) \cong \mathscr{F}. \quad \Box$

Thank You!

Definition An **Equivalence Relation** is a relation \mathcal{R} of $X \in obj(\mathscr{X})$ satisfying the following conditions:



And note if \mathscr{X} admits colimits then we could construct the equalizer, q of d_0, d_1 .

Appendix II

Definition

A **Pretopos** is a category **C** satisfying the following conditions:

- C admits finite limits.
- Every equivalence relation in **C** is effective.
- C admits finite coproducts, and coproducts are disjoint.
- The collection of effective epimorphisms in **C** is closed under pullbacks.
- Finite coproducts in **C** are preserved by pullback.

This is to say that **C** is exact (regular and every congruence pair is a kernel) and extensive (coprods work well with pullback).

References I

Adamek, J. and J. Rosicky (1994). *Locally Presentable and Accessible Categories*. London Mathematical Society Lecture Note Series. Cambridge University Press. DOI: 10.1017/CBO9780511600579.

- Awodey, S. (2010). *Category Theory*. 2nd. USA: Oxford University Press, Inc. ISBN: 0199237182.
- Borceux, F. (1994). Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press. ISBN: 9780521441803.
- Ferero, W. (2019). *Giraud's Theorem*. The University of Barcleona. URL:
- http://www.ub.edu/topologia/seminars/infgiraud.pdf. Johnstone, Peter T (2002). *Sketches of an elephant: a Topos theory compendium*. Oxford logic guides. New York, NY: Oxford Univ. Press.

References II

- Leinster, T. (2016). Basic Category Theory. arXiv: 1612.09375 [math.CT].
- Lurie, J. (2009). *Higher Topos Theory (AM-170)*. Princeton University Press. ISBN: 9781400830558. DOI: doi:10.1515/9781400830558.
- (2018). Giraud's Theorem. Harvard University. URL: https://www.math.ias.edu/~lurie/278xnotes/Lecture10-Giraud.pdf.
- MacLane, S. and I. Moerdijk (2012). *Sheaves in Geometry and Logic: A First Introduction to Topos Theory*. Universitext. Springer New York. ISBN: 9781461209270.
- Vergura, M. (2014). A Giraud-type Theorem for Model Topoi. Università degli Studi di Padova, Universiteit Leiden. URL: https://algant.eu/documents/theses/vergura.pdf.