Topos Theory Seminar, Carnegie Mellon University

Giraud's Theorem

Rio Alvarado

$$
\mathscr{T} \stackrel{\text { lex }}{\leftrightarrows} \operatorname{PSh}(\mathbf{C})
$$

December 8, 2022

Outline

Basic Theoretical Background
(1) The Goal
(2) Preliminaries
2.1 Size Issues
2.2 Grothendieck Topologies, Sheaves \& Topoi
2.3 Localization \& Sheafification
2.4 Equivalent Characterizations of Topoi
(3) Going Forward: (2) \Rightarrow (3)
3.1 Introducing the Giraud Axioms
(4) Giraud's Theorem [(3) \Rightarrow (1)]
4.1 The Fully Unpacked Theorem
4.2 Reframing
4.3 A Necessary Lemma
4.4 The Final Step

Theoretical Background: Basic Definitions

Cocompleteness

A category is called Cocomplete if every diagram in it has a colimit.

Presheaves

Given small category \mathbf{C} we call a functor $F: \mathbf{C}^{\mathrm{op}} \rightarrow$ Set a Presheaf. Replace Set by any category S and it becomes an S-valued presheaf. The category of presheaves on \mathbf{C} is denoted $\hat{\mathbf{C}}$ or $\operatorname{PSh}(\mathbf{C})$.

Finite Presentability

Let $C \in \operatorname{obj}(\mathbf{C})$, then we say c is Finitely Presentable if its corresponding Hom-functor, $\operatorname{Hom}(C,-): \mathbf{C} \rightarrow$ Set, preserves (commutes with) directed colimits.

Theoretical Background: λ-Presentability

Definition

Let λ be a regular cardinal.

- A poset P is λ-Directed when every $S \subseteq P,|S|<\lambda$ has a join (upper bound). A diagram whose set of morphisms is a λ-directed poset is a λ-directed diagram.
- An object $C \in \operatorname{obj}(\mathbf{C})$ is λ-Presentable when $\operatorname{Hom}(C,-)$ preserves λ-directed colimits.

Definition

A category \mathbf{C} is Locally λ-Presentable if it is cocomplete and has a set $\mathscr{A} \subseteq \operatorname{obj}(\mathbf{C})$ of λ-presentable objects in that every
$C \in \operatorname{obj}(\mathbf{C})$ is a λ-directed colimit of elements in \mathscr{A}.
C is Locally Presentable or simply Presentable if it is locally λ-presentable for some λ.

The Goal

Throughout, "topos" will always refer to a Grothendieck topos.

Theorem (Giraud)

Let \mathscr{X} be any category. Then the following conditions are equivalent:
(1) The category \mathscr{X} is a topos; that is, equivalent to the category of sheaves on a site.
(2) The category \mathscr{X} is a left exact localization of $\operatorname{PSh}(\boldsymbol{C})$ for some small category \mathbf{C}.
(3) Giraud's Axioms are satisfied. (To be stated.)

In this talk we will recall the direction $1 \rightarrow 2$ which is classical from sheafification; then prove $\mathbf{2} \Rightarrow$ (3) and conclude with the main point of showing (3) \Rightarrow.

Size Issues

Throughout we will consider throughout our category \mathbf{C} to be a small category in the sense that its hom set is indeed a set (as opposed to a proper class) and similarly with our set of objects.

Roughly, a set is just that, and a proper class is "too big". Rigorously, we have:

Set vs. Proper Class

Given a Grothendieck universe \mathcal{U}, we say the Sets are elements of \mathcal{U}, while Proper Classes are subsets of \mathcal{U}. Thus, an item is small when it is an element of \mathcal{U}.

Grothendieck Topologies

Grothendieck Topology

A Grothendieck Topology on category \mathbf{C} is a function J which assigns to each $C \in \operatorname{obj}(\mathbf{C})$ a collection $J(C)$ of sieves on C such that:

- The maximal sieve $\{f \mid \operatorname{cod}(f)=C\}$ is in $J(C)$;
- (Stability) if $S \in J(C)$ then $h^{*}(S) \in J(D)$ for any arrow $h: D \rightarrow C$;
- (Transitivity) if $S \in J(C)$ and R is any sieve on C such that $h^{*}(R) \in J(D), \forall h: D \rightarrow C$ in S then $R \in J(C)$.

Sites

A Site (\mathbf{C}, J) is a category equipped a Grothendieck topology.

Definition of a Topos

Sheaves \& Topoi

A presheaf F is a Sheaf when for all covering sieves S and all natural transformations $\alpha: S \rightarrow F$ there exists a unique extension to the representable functor of \mathbf{C}. That is, we have the following diagram:

We call category \mathscr{X} a (Grothendieck) Topos if it can be realized as a category of sheaves on some Grothendieck site C, which may be written as $\operatorname{Shv}(\mathbf{C})$.

Localizations

Definition

We call a functor $F: \mathbf{C} \rightarrow \mathbf{D}$ a Localization if it admits a fully faithful right adjoint. If the left adjoint preserves small limits then F is Exact.

Proposition

The category $\operatorname{Shv}(\boldsymbol{C})$ is a left exact localization of $\operatorname{PSh}(\boldsymbol{C})$.
Note the above proposition is $1 \Rightarrow 2$ in Giraud's Theorem.

Effective Epimorphism

Given $f \in \operatorname{Hom}_{\mathbf{C}}(X, Y)$ we say it is an Effective Epimorphism if Y is the coimage of f. Equivalently, for the kernel pair $X \times_{Y} X$, we have $X \times_{Y} X \rightrightarrows X \xrightarrow{f} Y$ as a coequalizer. Alternatively, $\forall C \in \operatorname{obj}(\mathbf{C}), \operatorname{Hom}_{\mathbf{C}}(Y, C) \cong\left\{u \in \operatorname{Hom}_{\mathbf{C}}(X, C) \mid u \circ \pi=u \circ \pi^{\prime}\right\}$ for $\pi, \pi^{\prime}: X \times_{Y} X \rightarrow X$.

Sheafification

The discussion herein briefly sketches a proof of the preceding proposition and thus a step in our overall proof. See MacLane and Moerdijk 2012 for full details.
Begin with the inclusion functor $i: \operatorname{Shv}(\mathbf{C}) \hookrightarrow \operatorname{PSh}(\mathbf{C})$ then the claim is it has left adjoint $\mathfrak{a}: \operatorname{PSh}(\mathbf{C}) \rightarrow \operatorname{Shv}(\mathbf{C})$ where $\mathfrak{a}=\eta \circ \eta$ for $\eta: \operatorname{PSh}(\mathbf{C}) \rightarrow \operatorname{PSh}(\mathbf{C})$ such that, for any presheaf F :

$$
\eta(F)(C)=\underset{R \in J(c)}{\operatorname{colim}} \operatorname{Match}(R, F)
$$

For matching families of the cover R of $C \in \operatorname{obj}(\mathbf{C})$.
Under this construction $\eta(F)$ is a separated presheaf and we may invoke the lemma that any such separated presheaf is a sheaf. Finally, it is easy enough to show that η preserves small limits. (As Hom $(R,-)$ preserves limits, filtered colimits commute with finite limits in Set and limits in $\operatorname{PSh}(\mathbf{C})$ are computed point-wise.)

Characterizing Grothendieck Topoi

Proposition

Let \mathscr{X} be a category, then the following are equivalent:
(1) The category \mathscr{X} is a Grothendieck topos, that is, equivalent to the category of sheaves on a site.
(2) The category \mathscr{X} is a lex localization of presheaves for some small category.

Giraud's Theorem (Again)

Theorem (Giraud)

Let \mathscr{X} be any category. Then the following conditions are equivalent:
(1) The category \mathscr{X} is a topos.
(2) The category \mathscr{X} is a left exact localization of $\operatorname{PSh}(\boldsymbol{C})$ for some small category C.
(3) Giraud's Axioms are satisfied:
(i) The category \mathscr{X} is presentable.
(1i) Colimits in \mathscr{X} are universal.
(iii) Coproducts in \mathscr{X} are disjoint.
(iv) Equivalence relations in \mathscr{X} are effective.

Thus, our next goal is to show that a lex localization of presheaves has exactly these four properties.
$[(2) \Rightarrow(3)](\mathrm{i})$

Proposition (i)

Let $L: \operatorname{PSh}(\boldsymbol{C}) \rightarrow \mathscr{X}$ be a lex localization, then \mathscr{X} is presentable.
See Borceux 1994 for a proof in several steps or Adamek and Rosicky 1994 Theorem 2.26.
$[(2) \Rightarrow(3)]$ (ii)

Definition

Let \mathscr{X} be a category with pullbacks and small colimits. Then given any morphism $f: T \rightarrow S$ we have the adjunction

$$
\mathscr{X}_{/ S} \xrightarrow[\substack{-\underset{f^{*}}{\longrightarrow-}}]{f \circ-} \mathscr{X}_{/ T} .
$$

We say Colimits in \mathscr{X} are Universal when the pullback functor $f^{*}: \mathscr{X}_{/ S} \rightarrow \mathscr{X}_{/ T}$ preserves colimits.

Proposition (ii)

Let $\operatorname{PSh}(C) \xrightarrow{L} \mathscr{X}$ be a lex localization, then colimits in \mathscr{X} are universal.

Proof of Proposition (ii)

Proof.

Note colimits in $\mathrm{PSh}(\mathbf{C})$ are universal (as they're computed point-wise in Set). Now apply the right adjoint of L to f^{*} and recall that lex localizations are stable under slice constructions so we get that $f^{*}: \operatorname{PSh}(\mathbf{C})_{/ Y} \rightarrow \operatorname{PSh}(\mathbf{C})_{/ X}$ preserves colimits. Thus, if we apply L to f^{*} we conclude $f^{*}: \mathscr{X}_{/ Y} \rightarrow \mathscr{X}_{/ X}$ preserves colimits.
$[(2) \Rightarrow(3)]$ (iii)

Definition

Let \mathbf{C} be a category with coproducts and an initial object \emptyset. The coproducts in \mathbf{C} are Disjoint if we have the following pullback diagram:

and we have that $X \times_{X \amalg Y} Y$ is the initial object in \mathbf{C}.

Proposition (iii)

Let $L: \operatorname{PSh}(C) \rightarrow \mathscr{X}$ be a lex localization, then coproducts in \mathscr{X} are disjoint.

Proof of Proposition (iii)

Proof.

Let $X, Y \in \operatorname{obj}(\mathscr{X})$ and apply the right adjoint R of L to obtain (using the fact that coproducts in $\mathrm{PSh}(\mathbf{C})$ are disjoint (because again they are computed point-wise in Set and in set and coprods in Set are just disjoint unions) the diagram:

Now we apply L and obtain:

Proof of Proposition (iii) [Cont.]

Proof.

So by left exactness we obtain finally:

And we see that the coproducts are indeed disjoint.

$[(2) \Rightarrow(3)]$ (iv)

Definition

Given equivalence relation \mathcal{R} for a category \mathscr{X} with diagram:

if ϕ is an equality then \mathcal{R} is an Effective Equivalence Relation.

Proposition (iv)

Let $L: \operatorname{PSh}(C) \rightarrow \mathscr{X}$ be a lex localization, then equivalence relations in \mathscr{X} are effective.

Proof of Proposition (iv)

Proof.

Note first that equivalence relations in Set are effective because we always have pullbacks in Set. Second, it follows that equivalence relations in $\operatorname{PSh}(\mathbf{C})$ are effective. Let \mathcal{R} be an equivalence relation, then we apply the right adjoint R of L and obtain the following diagram in presheaves:

Proof of Proposition (iv) [Cont.]

Proof.

We now apply L (which as a left adjoint preserves colimits and as a lex functor preserves pullbacks) and obtain:

From which we conclude the equivalence relations in \mathscr{X} are effective.

A Covering Definition

Definition

Let \mathscr{X} be a pretopos which admits infinite coproducts. A collection of morphisms $\left\{f_{i}: U_{i} \rightarrow X\right\}_{i \in I}$ is a Covering if it induces an effective epimorphism $\coprod U_{i} \rightarrow X$.
This is equivalent to requiring that for every subobject $X_{0} \subseteq X$ for which f_{i} factors through X_{0} we have $X_{0}=X$.

Giraud's Theorem (Unpacked)

Theorem (Giraud)

Let \mathscr{X} be any category. Then the following conditions are equivalent:
(1) The category \mathscr{X} is a topos; hence equivalent to the category of Shv (\boldsymbol{C}) for \boldsymbol{C} a small category with a Grothendieck topology.
(2) The category \mathscr{X} is a left exact localization of $\operatorname{PSh}(\boldsymbol{C})$.
(3) Giraud's Axioms are satisfied:
(i) Equivalence relations in \mathscr{X} are effective.
(ii) Coproducts in \mathscr{X} are disjoint (and \mathscr{X} admits small coproducts).
(ii) The collection of effective epimorphisms in \mathscr{X} is closed under pullback.
(iv The formation of coproducts commutes with pullback: that is, for every morphism $f: X \rightarrow Y$ in \mathscr{X}, the pullback functor $f^{*}: \mathscr{X}_{/ Y} \rightarrow \mathscr{X}_{/ \mathrm{X}}$ preserves coproducts.
(v) There exists a set of objects \mathscr{U} of \mathscr{X} which generate \mathscr{X} as: $\forall X \in \operatorname{obj}(\mathscr{X})$ there exists covering $\left\{U_{i} \rightarrow X\right\}$, where $U_{i} \in \mathscr{U}$.

Reframing The Implication

We will prove a slightly modified statement, with the additional assumption that \mathscr{X} is closed under finite limits.

Theorem ($3^{\prime} \Rightarrow 1^{\prime}$)

Let \mathscr{X} be a category satisfying Giraud's Axioms and $C \subseteq \mathscr{X}$ be a full subcategory of \mathscr{X} which is closed under finite limits and generates \mathscr{X} (in the sense of (0). Say that a family of morphisms $\left\{U_{i} \rightarrow X\right\}$ in C is a covering if is a covering in \mathscr{X} (as defined above). Then:
a The collection of covering families determines a Grothendieck topology on \mathbf{C}.
(b) For every object $Y \in \operatorname{obj}(\mathscr{X})$ let $h_{Y}: C^{o p} \rightarrow$ Set denote the functor represented by Y on the subcategory C, given by $h_{Y}(X)=\operatorname{Hom}_{\mathscr{X}}(X, Y)$. Then h_{Y} is a sheaf with respect to the Grothendieck topology above.
(c) The construction $Y \mapsto h_{Y}$ induces an equivalence of categories $h: X \rightarrow \operatorname{Shv}(C)$.

We then note that this (3) implies (1) (the statement that \mathscr{X} is a topos with finite limits) then (1) vacuously implies our original
(1) and thus if we show (3) $\Rightarrow 1^{\prime}$ we conclude our proof.

Note using the inclusion of full sub-category \mathbf{C} of \mathscr{X} and the fact that $\operatorname{PSh}(\mathbf{C}), \mathscr{X}$ are presentable we obtain the diagram:

Where for any $X \in \operatorname{obj}(\mathscr{X})$ we have $i^{*}(X): \mathbf{C}^{\text {op }} \rightarrow$ Set defined as obj $\left(\mathbf{C}^{\text {op }}\right) \ni D \mapsto \operatorname{Hom}_{\mathscr{X}}(i(D), X)=h_{X} \circ i$, for the representable presheaf h_{X} from the Yoneda Lemma.

A Remark on the Construction of h (Cont.)

Then $h_{X} \circ i$ is a sheaf iff we have h as in the diagram

So then this h defined as $\operatorname{obj}(X) \ni Y \mapsto h_{Y} \circ i$ is the precise construction of the functor in our theorem, whose image we write more simply as just h_{γ}.

Proof of Theorem $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right]$

Proof.

a Consider $\left\{U_{i} \rightarrow X\right\}$ in \mathbf{C} and $Y \xrightarrow{f} X$ in \mathbf{C}. We wish to show that the collection projection maps $\left\{U_{i} \times_{X} Y \rightarrow Y\right\}$ is also a covering. That is, given that $\left\lfloor U_{i} \rightarrow X\right.$ is an effective epi in \mathscr{X} wts that the induced map $\coprod\left(U_{i} \times_{X} Y\right) \rightarrow Y$ is the same. This is so, as (iii), (iv) assure us that pulling back along f preserves coproducts and being an effective epi.

Suppose we have a coverings $\left\{U_{i} \rightarrow X\right\}$ and $\left\{V_{i, j} \rightarrow U_{i}\right\}$ in \mathbf{C}. Now wts that the composite maps $\left\{V_{i j} \rightarrow X\right\}$ are also a covering. Let $X_{0} \subseteq X$ be a subobject such that each $V_{i, j} \rightarrow X$ factors through X_{0}. Then $V_{i, j} \rightarrow U_{i}$ factors through $X_{0} \times_{X} U_{i}, \forall i$. As $V_{i, j}$ cover U_{i}, each of the $U_{i} \rightarrow X$ factors through X_{0}, i.e. $X_{0} \times_{X} U_{i}=U_{i}$. And as $\left\{U_{i} \rightarrow X\right\}$ cover X we deduce $X_{0}=X$.

Finally, note the collection $\left\{f_{i}: U_{i} \rightarrow X\right\}$ is a covering when f_{i} admits a section, because then f_{i} is itself an effective epi in \mathbf{C}.

$\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)$ [Cont.]

Proof.

(b) Fix $Y \in \operatorname{obj}(\mathscr{X})$; wts that $h_{Y}: \mathrm{C}^{\mathrm{op}} \rightarrow$ Set is a sheaf. Let $\left\{U_{i} \rightarrow X\right\}$ be any covering of $X \in \operatorname{obj}(\mathbf{C})$, so wts that

$$
h_{Y}(X) \rightarrow \prod h_{Y}\left(U_{i}\right) \rightrightarrows \prod h_{Y}\left(U_{i} \times_{X} U_{j}\right)
$$

is an equalizer. Expanding the above mapping yields:

and as $\left\{U_{i} \rightarrow X\right\}$ is a covering it follows that $\coprod_{i} U_{i} \rightarrow X$ is an effective epi. So we're done as the map below is an iso by (iv).

$$
\coprod_{i, j}\left(U_{i} \times_{X} U_{j}\right) \rightarrow\left(\coprod_{i} U_{i}\right) \times_{X}\left(\coprod_{j} U_{j}\right)
$$

A Necessary Lemma

Lemma

Let $\left\{U_{i} \rightarrow X\right\}_{i \in I}$ be a covering in \mathscr{X}. Then the induced map $\coprod h_{U_{i}} \rightarrow h_{\mathrm{X}}$ is an effective epimorphism in $\operatorname{Shv}(\boldsymbol{C})$.

Proof.

Consider a section $s \in h_{X}(C), C \in \operatorname{obj}(\mathbf{C})$ given by morphism $C \rightarrow X$ in \mathscr{X}. As $\left\{U_{i} \rightarrow X\right\}$ is a covering the induced map $\coprod U_{i} \rightarrow X$ is an effective epi in \mathscr{X}. By (iii), (iv) it follows that $\left\{U_{i} \times{ }_{X} C \rightarrow C\right\}$ is also a covering in \mathscr{X}. And as obj($\left.\mathbf{C}\right)$ generates \mathscr{X}, each $U_{i} \times_{X} C$ admits a covering $\left\{V_{i, j} \rightarrow U_{i} \times_{X} C\right\}$ where $V_{i, j} \in \operatorname{obj}(\mathbf{C})$.

Then the composite maps collection $\left\{V_{i, j} \rightarrow C\right\}$ is a covering in C. By construction $\forall(i, j)$ the image $s_{i, j} \in h_{X}\left(V_{i, j}\right)$ of s belongs to the image of $h_{U_{i}}\left(V_{i, j}\right) \rightarrow h_{X}\left(V_{i, j}\right)$. So, allowing C, s to vary we conclude $\left\{h_{U_{i}} \rightarrow h_{X}\right\}$ is a covering of h_{X} in $\operatorname{Shv}(\mathbf{C})$.

Proof.

We want to show that $\coprod_{i} h_{U_{i}} \rightarrow h_{X}$ is an effective epi. To this end we we value the map at some arbitrary $\alpha \in H_{X}(C), C \in \mathbf{C}$. Then cover $U_{i} \times_{X} C$ by some $V_{i, j} \in \mathbf{C}$ from which we can map $\alpha \in h_{X}(C)$ to $h_{X}\left(V_{i, j}\right)$ and then we can pull back to $h_{U_{i}}\left(V_{i, j}\right), \forall i, j$. Thus, since α, C we arbitrary we see that the desired condition on the codomain h_{X} being a coequalizer and we have an effective epi.

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

C First we wish to show that $h: \mathscr{X} \rightarrow \operatorname{Shv}(\mathscr{X})$ is fully faithful. Meaning that

$$
\forall X, Y \in \operatorname{obj}(\mathscr{X}), \theta_{X}: \operatorname{Hom}_{\mathscr{X}}(X, Y) \rightarrow \operatorname{Hom}_{\operatorname{Shv}(\mathbf{C})}\left(h_{X}, h_{Y}\right)
$$

is bijective. Fix Y and say that X is good if θ_{X} is bijective.
We know proceed in several steps:
(1) Every $X \in \operatorname{obj}(\mathbf{C})$ is good by the Yoneda Lemma.
(1) Suppose that $X \in \operatorname{obj}(\mathscr{X})$ admits covering $\left\{U_{i} \rightarrow X\right\}$. We claim if each U_{i} and fiber product $U_{i} \times_{X} U_{j}$ is good then so is X. To show this, note that $\coprod_{i} U_{i} \rightarrow X, \coprod_{i} h_{U_{i}} \rightarrow h_{X}$ are effective epis in $\mathscr{X}, \operatorname{Shv}(\mathbf{C})$, respectively, by the Lemma. And as both categories satisfy (iv) and h preserves finite limits we obtain coequalizer diagrams:

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

II)

$$
\begin{aligned}
\amalg_{i, j} U_{i} \times_{X} U_{j} & \longrightarrow \amalg_{i} U_{i} \longrightarrow X \\
\amalg_{i, j} h_{U_{i} \times x} U_{j} & \longrightarrow \amalg_{i} h_{U_{i}} \longrightarrow h_{\mathrm{X}} .
\end{aligned}
$$

Thus, θ_{X} fits in the following commutative diagram of sets:

where rows are equalizer diagrams. Thus we conclude θ_{X} is an iso.

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

III Now let $X \in \operatorname{obj}(\mathbf{C}), U \subseteq X$. Then we claim U is good. To prove this, pick a covering $\left\{U_{i} \rightarrow U\right\}$ where U_{i} belongs to C. Since here we assume \mathbf{C} is closed under finite limits each fiber product $U_{i} \times_{U} U_{j} \cong U_{i} \times_{X} U_{j}$ belongs to \mathbf{C} (where we use subobject embedding, essentially pulling back along it). Thus from (I) the objects $U_{i}, U_{i} \times_{X} U_{j}$ are good and so U is good by (II).
(1v) Let $X \in \operatorname{obj}(\mathbf{C})$ and pick covering $\left\{U_{i} \rightarrow X\right\}, U_{i} \in \operatorname{obj}(\mathbf{C})$. Then every fiber product $U_{i} \times_{X} U_{j}$ is a subobject of $U_{i} \times U_{j}$ in \mathbf{C} and therefore is good by (III), so we conclude X is good by (II).
Thus $h: \mathscr{X} \rightarrow \operatorname{Shv}(\mathscr{X})$ is indeed fully faithful.

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

We now wish to show that h is preserves coproducts. We first then apply the Lemma to the case where $I=\emptyset$ and so deduce that h maps the initial object of \mathscr{X} to that in $\operatorname{Shv}(\mathbf{C})$. Now fix $\left\{X_{i}\right\} \in \operatorname{obj}(\mathscr{X})$ with coproduct X, then wts that $\theta: \coprod h_{X_{i}} \rightarrow h_{X}$ is an iso in C. Our Lemma says tells us that θ is an effective epi and so it suffices to show that θ is too a mono, i.e.

$$
\coprod h_{X_{i}} \stackrel{\delta}{\rightarrow}\left(\coprod h_{X_{i}} \times_{h_{X}} \coprod h_{h_{X_{j}}}\right)
$$

is an iso. Recall now that $\operatorname{Shv}(\mathbf{C})$ satisfies (iv) and h is right exact (finite colimit preserving) so we may rewrite $\operatorname{cod}(\delta)=\coprod_{i, j} h_{X_{i} \times_{X} X_{j}}$. Thus we must show that $h_{X_{i}} \rightarrow h_{X_{i} \times{ }_{X} X_{j}}$ are isos and $h_{X_{i} \times{ }_{X} X_{j}}$ is an initial object of $\operatorname{Shv}(\mathbf{C}), i \neq j$. These follow from that fact that coproducts in \mathscr{X} are disjoint by (iii) and that h preserves monos.

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

Now we wish to show that h is essentially surjective. Select $\mathscr{F} \in \operatorname{Shv}(\mathbf{C}) ;$ wts that \mathscr{F} belongs to the essential image of h. First, consider the case where $\mathscr{F} \subseteq h_{X}$ for some $X \in \operatorname{obj}(\mathscr{X})$ and pick effective epi $\coprod h_{C_{i}} \rightarrow \mathscr{F}, C_{i} \in \mathbf{C}$. Set $U:=\coprod_{i} C_{i}$ to obtain an effective epi $h_{U} \rightarrow \mathscr{F}$ for some $U \in \mathscr{X}$ then $h_{U} \rightarrow \mathscr{F} \hookrightarrow h_{X}$ arises from $u \in \operatorname{Hom}_{\mathscr{X}}(U, X)$ and since \mathscr{X} is a pretopos u factors as $U \xrightarrow{u^{\prime}} Y \xrightarrow{u^{\prime \prime}} X$ for effective epi u^{\prime} and mono $u^{\prime \prime}$. (Note for the induced maps: $h_{U} \xrightarrow{u^{\prime}} h_{Y}$ is an effective epi in $\operatorname{Shv}(\mathbf{C})$ by our Lemma and $h_{Y} \xrightarrow{u^{\prime \prime}} X$ is a mono in $\operatorname{Shv}(\mathbf{C})$ as h is lex). As images are unique in a pretopos we conclude that $\mathscr{F} \cong h_{Y}$.

Now suppose that \mathscr{F} is any sheaf on \mathbf{C} and again pick effective epi $h_{U} \rightarrow \mathscr{F}, U \in \operatorname{obj}(X)$.

The Final Step: $\left[\left(3^{\prime}\right) \Rightarrow\left(1^{\prime}\right)\right](\mathrm{c})$

Proof.

In this case, the fiber product $h_{U} \times \mathscr{F} h_{U}$ is a sheaf on \mathbf{C} which can be viewed as a subobject of $h_{U} \times h_{U}=h_{U \times U}$. By the same logic as before we can pick an iso $h_{U} \times \mathscr{F} h_{U} \cong h_{R}, R \in \operatorname{obj}(\mathscr{X})$. Now consider the canonical bijection

$$
\forall Y \in \operatorname{obj}(\mathscr{X}), \operatorname{Hom}_{\mathscr{X}}(Y, R) \cong \operatorname{Hom}_{\operatorname{Shv}(\mathbf{C})}\left(h_{Y}, h_{u} \times \mathscr{F} h_{U}\right)
$$

so we can view R as an equivalence relation on U in \mathscr{X}.
Thus by (i) this equivalence relation is effective. That is, there exists an effective epi $U \rightarrow X$ in \mathscr{X} with $R=U \times_{X} U$ (as subobjects of $U \times U$). Therefore we apply our Lemma to the covering $\{U \rightarrow X\}$ and finally obtain the isomorphism:

$$
h_{X} \cong \operatorname{Coeq}\left(h_{R} \rightrightarrows h_{U}\right) \cong \operatorname{Coeq}\left(h_{U} \times \mathscr{F} h_{U} \rightrightarrows h_{U}\right) \cong \mathscr{F} .
$$

Thank You!

Appendix I

Definition

An Equivalence Relation is a relation \mathcal{R} of $X \in \operatorname{obj}(\mathscr{X})$ satisfying the following conditions:

Transitivity:

And note if \mathscr{X} admits colimits then we could construct the equalizer, q of d_{0}, d_{1}.

Definition

A Pretopos is a category C satisfying the following conditions:

- C admits finite limits.
- Every equivalence relation in \mathbf{C} is effective.
- C admits finite coproducts, and coproducts are disjoint.
- The collection of effective epimorphisms in \mathbf{C} is closed under pullbacks.
- Finite coproducts in \mathbf{C} are preserved by pullback.

This is to say that \mathbf{C} is exact (regular and every congruence pair is a kernel) and extensive (coprods work well with pullback).

References I

Adamek, J. and J. Rosicky (1994). Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series. Cambridge University Press. DOI: 10.1017/CBO9780511600579.

Awodey, S. (2010). Category Theory. 2nd. USA: Oxford University Press, Inc. ISBN: 0199237182.
Borceux, F. (1994). Handbook of Categorical Algebra: Volume 3, Sheaf Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press. ISBN: 9780521441803.

Ferero, W. (2019). Giraud's Theorem. The University of Barcleona. URL:
http://www.ub.edu/topologia/seminars/infgiraud.pdf.
Johnstone, Peter T (2002). Sketches of an elephant: a Topos theory compendium. Oxford logic guides. New York, NY: Oxford Univ. Press.

References II

Leinster, T. (2016). Basic Category Theory. arXiv: 1612.09375 [math.CT].
Lurie, J. (2009). Higher Topos Theory (AM-170). Princeton
University Press. ISBN: 9781400830558 . DOI: doi:10.1515/9781400830558.

- (2018). Giraud's Theorem. Harvard University. URL:
https://www.math.ias.edu/~lurie/278xnotes/Lecture10Giraud.pdf.
MacLane, S. and I. Moerdijk (2012). Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. Springer New York. ISBN: 9781461209270.
Vergura, M. (2014). A Giraud-type Theorem for Model Topoi.
Università degli Studi di Padova, Universiteit Leiden. URL: https://algant.eu/documents/theses/vergura.pdf.

