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Cocompleteness

A category is called Cocomplete if every diagram in it has a
colimit.

Presheaves
Given small category C we call a functor F : Cop → Set a
Presheaf. Replace Set by any category S and it becomes an
S-valued presheaf. The category of presheaves on C is denoted
Ĉ or PSh(C).

Finite Presentability

Let C ∈ obj(C), then we say c is Finitely Presentable if its
corresponding Hom-functor, Hom(C,−) : C → Set, preserves
(commutes with) directed colimits.

Theoretical Background: Basic Definitions
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Definition
Let λ be a regular cardinal.

• A poset P is λ-Directed when every S ⊆ P, |S| < λ has a
join (upper bound). A diagram whose set of morphisms is
a λ-directed poset is a λ-directed diagram.

• An object C ∈ obj(C) is λ-Presentable when Hom(C,−)
preserves λ-directed colimits.

Definition
A category C is Locally λ-Presentable if it is cocomplete and
has a set A ⊆ obj(C) of λ-presentable objects in that every
C ∈ obj(C) is a λ-directed colimit of elements in A .

C is Locally Presentable or simply Presentable if it is locally
λ-presentable for some λ.

Theoretical Background: λ-Presentability
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Throughout, “topos” will always refer to a Grothendieck topos.

Theorem (Giraud)

Let X be any category. Then the following conditions are equivalent:
1 The category X is a topos; that is, equivalent to the category of

sheaves on a site.
2 The category X is a left exact localization of PSh(C) for some

small category C.
3 Giraud’s Axioms are satisfied. (To be stated.)

In this talk we will recall the direction 1 ⇒ 2 which is classical
from sheafification; then prove 2 ⇒ 3 and conclude with the
main point of showing 3 ⇒ 1 .

The Goal
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Throughout we will consider throughout our category C to be a
small category in the sense that its hom set is indeed a set (as
opposed to a proper class) and similarly with our set of objects.

Roughly, a set is just that, and a proper class is “too big”.
Rigorously, we have:

Set vs. Proper Class

Given a Grothendieck universe U , we say the Sets are elements
of U , while Proper Classes are subsets of U . Thus, an item is
small when it is an element of U .

Size Issues
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Grothendieck Topology

A Grothendieck Topology on category C is a function J which
assigns to each C ∈ obj(C) a collection J(C) of sieves on C such
that:

• The maximal sieve {f | cod(f ) = C} is in J(C);
• (Stability) if S ∈ J(C) then h∗(S) ∈ J(D) for any arrow

h : D → C;
• (Transitivity) if S ∈ J(C) and R is any sieve on C such that

h∗(R) ∈ J(D), ∀h : D → C in S then R ∈ J(C).

Sites
A Site (C, J) is a category equipped a Grothendieck topology.

Grothendieck Topologies
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Sheaves & Topoi

A presheaf F is a Sheaf when for all covering sieves S and all
natural transformations α : S → F there exists a unique
extension to the representable functor of C. That is, we have the
following diagram:

S(C) F

y(C)

α

∃!

We call category X a (Grothendieck) Topos if it can be
realized as a category of sheaves on some Grothendieck site C,
which may be written as Shv(C).

Definition of a Topos
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Definition
We call a functor F : C → D a Localization if it admits a fully
faithful right adjoint. If the left adjoint preserves small limits
then F is Exact.

Proposition

The category Shv(C) is a left exact localization of PSh(C).

Note the above proposition is 1 ⇒ 2 in Giraud’s Theorem.

Effective Epimorphism

Given f ∈ HomC(X,Y) we say it is an Effective Epimorphism
if Y is the coimage of f . Equivalently, for the kernel pair X ×Y X,

we have X ×Y X ⇒ X
f−→ Y as a coequalizer. Alternatively,

∀C ∈ obj(C) ,HomC(Y,C) ∼= {u ∈ HomC(X,C) | u ◦ π = u ◦ π′}
for π, π′ : X ×Y X → X.

Localizations
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The discussion herein briefly sketches a proof of the preceding
proposition and thus a step in our overall proof. See MacLane
and Moerdijk 2012 for full details.
Begin with the inclusion functor i : Shv(C) ↪→ PSh(C) then the
claim is it has left adjoint a : PSh(C) → Shv(C) where a = η ◦ η
for η : PSh(C) → PSh(C) such that, for any presheaf F:

η(F)(C) = colim
R∈J(c)

Match(R,F).

For matching families of the cover R of C ∈ obj(C).
Under this construction η(F) is a separated presheaf and we
may invoke the lemma that any such separated presheaf is a
sheaf. Finally, it is easy enough to show that η preserves small
limits. (As Hom(R,−) preserves limits, filtered colimits
commute with finite limits in Set and limits in PSh(C) are
computed point-wise.)

Sheafification
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Proposition

Let X be a category, then the following are equivalent:
1 The category X is a Grothendieck topos, that is, equivalent to

the category of sheaves on a site.
2 The category X is a lex localization of presheaves for some small

category.

Characterizing Grothendieck Topoi
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Theorem (Giraud)

Let X be any category. Then the following conditions are equivalent:
1 The category X is a topos.
2 The category X is a left exact localization of PSh(C) for some

small category C.
3 Giraud’s Axioms are satisfied:

i The category X is presentable.
ii Colimits in X are universal.
iii Coproducts in X are disjoint.
iv Equivalence relations in X are effective.

Thus, our next goal is to show that a lex localization of
presheaves has exactly these four properties.

Giraud’s Theorem (Again)
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Proposition (i)

Let L : PSh(C) → X be a lex localization, then X is presentable.

See Borceux 1994 for a proof in several steps or Adamek and
Rosicky 1994 Theorem 2.26.

[(2) ⇒ (3)] (i)
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Definition
Let X be a category with pullbacks and small colimits. Then
given any morphism f : T → S we have the adjunction

X/S X/T.
f◦−

f∗

⊣

We say Colimits in X are Universal when the pullback
functor f ∗ : X/S → X/T preserves colimits.

Proposition (ii)

Let PSh(C) L−→ X be a lex localization, then colimits in X are
universal.

[(2) ⇒ (3)] (ii)
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Proof.
Note colimits in PSh(C) are universal (as they’re computed
point-wise in Set). Now apply the right adjoint of L to f ∗ and
recall that lex localizations are stable under slice constructions
so we get that f ∗ : PSh(C)/Y → PSh(C)/X preserves colimits.
Thus, if we apply L to f ∗ we conclude f ∗ : X/Y → X/X
preserves colimits.

Proof of Proposition (ii)
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Definition
Let C be a category with coproducts and an initial object ∅. The
coproducts in C are Disjoint if we have the following pullback
diagram:

∅ Y

X X
∐

Y

⌟

and we have that X ×X
∐

Y Y is the initial object in C.

Proposition (iii)

Let L : PSh(C) → X be a lex localization, then coproducts in X are
disjoint.

[(2) ⇒ (3)] (iii)
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Proof.
Let X,Y ∈ obj(X ) and apply the right adjoint R of L to obtain
(using the fact that coproducts in PSh(C) are disjoint (because
again they are computed point-wise in Set and in set and
coprods in Set are just disjoint unions) the diagram:

0 R(Y)

R(X) RX
∐

RY

⌟

Now we apply L and obtain:

L(0) LR(Y)

LR(X) L(RX
∐

RY)

⌟

Proof of Proposition (iii)
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Proof.
So by left exactness we obtain finally:

∅ Y

X X
∐

Y

⌟

And we see that the coproducts are indeed disjoint.

Proof of Proposition (iii) [Cont.]
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Definition
Given equivalence relation R for a category X with diagram:

R

X ×X/R X X

X X/R

ϕ

q

q

if ϕ is an equality then R is an Effective Equivalence Relation.

Proposition (iv)

Let L : PSh(C) → X be a lex localization, then equivalence relations
in X are effective.

[(2) ⇒ (3)] (iv)
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Proof.
Note first that equivalence relations in Set are effective because
we always have pullbacks in Set. Second, it follows that
equivalence relations in PSh(C) are effective . Let R be an
equivalence relation, then we apply the right adjoint R of L and
obtain the following diagram in presheaves:

RR

RX ×RX/RR RX RX

RX RX/RRq

q

Proof of Proposition (iv)
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Proof.
We now apply L (which as a left adjoint preserves colimits and
as a lex functor preserves pullbacks) and obtain:

R

X ×L(RX/RR) X X

X L(RX/RR)
Lq

Lq

From which we conclude the equivalence relations in X are
effective.

Proof of Proposition (iv) [Cont.]
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Definition
Let X be a pretopos which admits infinite coproducts. A
collection of morphisms {fi : Ui → X}i∈I is a Covering if it
induces an effective epimorphism

∐
Ui → X.

This is equivalent to requiring that for every subobject X0 ⊆ X
for which fi factors through X0 we have X0 = X.

A Covering Definition
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Theorem (Giraud)

Let X be any category. Then the following conditions are equivalent:
1 The category X is a topos; hence equivalent to the category of

Shv(C) for C a small category with a Grothendieck topology.
2 The category X is a left exact localization of PSh(C).
3 Giraud’s Axioms are satisfied:

i Equivalence relations in X are effective.
ii Coproducts in X are disjoint (and X admits small coproducts).
iii The collection of effective epimorphisms in X is closed under

pullback.
iv The formation of coproducts commutes with pullback: that is, for

every morphism f : X → Y in X , the pullback functor
f ∗ : X/Y → X/X preserves coproducts.

v There exists a set of objects U of X which generate X as:
∀X ∈ obj(X ) there exists covering {Ui → X}, where Ui ∈ U .

Giraud’s Theorem (Unpacked)
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We will prove a slightly modified statement, with the
additional assumption that X is closed under finite limits.
Theorem ( 3’ ⇒ 1’ )

Let X be a category satisfying Giraud’s Axioms and C ⊆ X be a full
subcategory of X which is closed under finite limits and generates
X (in the sense of v ). Say that a family of morphisms {Ui → X} in
C is a covering if is a covering in X (as defined above). Then:

a The collection of covering families determines a Grothendieck
topology on C.

b For every object Y ∈ obj(X ) let hY : Cop → Set denote the
functor represented by Y on the subcategory C, given by
hY(X) = HomX (X,Y). Then hY is a sheaf with respect to the
Grothendieck topology above.

c The construction Y 7→ hY induces an equivalence of categories
h : X → Shv(C).

Reframing The Implication
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We then note that this 3’ implies 1’ (the statement that X is a
topos with finite limits) then 1’ vacuously implies our original

1 and thus if we show 3’ ⇒ 1’ we conclude our proof.

Reframing The Implication
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Note using the inclusion of full sub-category C of X and the
fact that PSh(C),X are presentable we obtain the diagram:

C

PSh(C) X .
i!

i∗

i

⊣
Where for any X ∈ obj(X ) we have i∗(X) : Cop → Set defined
as obj(Cop) ∋ D 7→ HomX (i(D),X) = hX ◦ i, for the
representable presheaf hX from the Yoneda Lemma.

A Remark on the Construction of h
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Then hX ◦ i is a sheaf iff we have h as in the diagram

X PSh(C)

Shv(C).

i∗

h

So then this h defined as obj(X) ∋ Y 7→ hY ◦ i is the precise
construction of the functor in our theorem, whose image we
write more simply as just hY.

A Remark on the Construction of h (Cont.)
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Proof.

a Consider {Ui → X} in C and Y
f−→ X in C. We wish to show

that the collection projection maps {Ui ×X Y → Y} is also a
covering. That is, given that

∐
Ui → X is an effective epi in X

wts that the induced map
∐
(Ui ×X Y) → Y is the same. This is

so, as (iii), (iv) assure us that pulling back along f preserves
coproducts and being an effective epi.

Suppose we have a coverings {Ui → X} and {Vi,j → Ui} in C.
Now wts that the composite maps {Vij → X} are also a
covering. Let X0 ⊆ X be a subobject such that each Vi,j → X
factors through X0. Then Vi,j → Ui factors through X0 ×X Ui, ∀i.
As Vi,j cover Ui, each of the Ui → X factors through X0, i.e.
X0 ×X Ui = Ui. And as {Ui → X} cover X we deduce X0 = X.

Finally, note the collection {fi : Ui → X} is a covering when fi
admits a section, because then fi is itself an effective epi in C.

Proof of Theorem [(3’) ⇒ (1’)]
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Proof.
b Fix Y ∈ obj(X ); wts that hY : Cop → Set is a sheaf. Let
{Ui → X} be any covering of X ∈ obj(C), so wts that

hY(X) →
∏

hY(Ui) ⇒
∏

hY(Ui ×X Uj)

is an equalizer. Expanding the above mapping yields:

HomX (X,Y) → HomX (
∐

i

Ui,Y) ⇒ HomX (
∐
i,j

Ui ×X Uj,Y)

and as {Ui → X} is a covering it follows that
∐

i Ui → X is an
effective epi. So we’re done as the map below is an iso by (iv).∐

i,j

(Ui ×X Uj) −→ (
∐

i

Ui)×X (
∐

j

Uj)

(3’) ⇒ (1’) [Cont.]
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Lemma
Let {Ui → X}i∈I be a covering in X . Then the induced map∐

hUi → hX is an effective epimorphism in Shv(C).

Proof.
Consider a section s ∈ hX(C),C ∈ obj(C) given by morphism
C → X in X . As {Ui → X} is a covering the induced map∐

Ui → X is an effective epi in X . By (iii), (iv) it follows that
{Ui ×X C → C} is also a covering in X . And as obj(C)
generates X , each Ui ×X C admits a covering {Vi,j → Ui ×X C}
where Vi,j ∈ obj(C).

Then the composite maps collection {Vi,j → C} is a covering in
C. By construction ∀(i, j) the image si,j ∈ hX(Vi,j) of s belongs to
the image of hUi(Vi,j) → hX(Vi,j). So, allowing C, s to vary we
conclude {hUi → hX} is a covering of hX in Shv(C).

A Necessary Lemma
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Proof.
We want to show that

∐
i hUi → hX is an effective epi. To this

end we we value the map at some arbitrary α ∈ HX(C),C ∈ C.
Then cover Ui ×X C by some Vi,j ∈ C from which we can map
α ∈ hX(C) to hX(Vi,j) and then we can pull back to hUi(Vi,j), ∀i, j.
Thus, since α,C we arbitrary we see that the desired condition
on the codomain hX being a coequalizer and we have an
effective epi.

A Second Proof of the Lemma
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Proof.
c First we wish to show that h : X → Shv(X ) is fully faithful.
Meaning that

∀X,Y ∈ obj(X ) , θX : HomX (X,Y) → HomShv(C)(hX, hY)

is bijective. Fix Y and say that X is good if θX is bijective.
We know proceed in several steps:

I Every X ∈ obj(C) is good by the Yoneda Lemma.
II Suppose that X ∈ obj(X ) admits covering {Ui → X}. We

claim if each Ui and fiber product Ui ×X Uj is good then so
is X. To show this, note that

∐
i Ui → X,

∐
i hUi → hX are

effective epis in X , Shv(C), respectively, by the Lemma.
And as both categories satisfy (iv) and h preserves finite
limits we obtain coequalizer diagrams:

The Final Step: [(3’) ⇒ (1’)](c)
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Proof.

II ∐
i,j Ui ×X Uj

∐
i Ui X

∐
i,j hUi×XUj

∐
i hUi hX.

Thus, θX fits in the following commutative diagram of sets:

HomX (X, Y)
∏

i HomX (Ui, Y)
∏

i,j HomX (Ui ×x Uj, Y)

HomShv(C)(hX, hY)
∏

i HomShv(C)(hUi
, hY)

∏
i,j HomShv(C)(hUi×xUj

, hY)

θx ≀ ≀

where rows are equalizer diagrams. Thus we conclude θX
is an iso.

The Final Step: [(3’) ⇒ (1’)](c)
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Proof.

III Now let X ∈ obj(C) ,U ⊆ X. Then we claim U is good. To
prove this, pick a covering {Ui → U} where Ui belongs to
C. Since here we assume C is closed under finite limits
each fiber product Ui ×U Uj

∼= Ui ×X Uj belongs to C
(where we use subobject embedding, essentially pulling
back along it). Thus from (I) the objects Ui,Ui ×X Uj are
good and so U is good by (II).

IV Let X ∈ obj(C) and pick covering {Ui → X},Ui ∈ obj(C).
Then every fiber product Ui ×X Uj is a subobject of Ui × Uj
in C and therefore is good by (III), so we conclude X is
good by (II).

Thus h : X → Shv(X ) is indeed fully faithful.

The Final Step: [(3’) ⇒ (1’)](c)
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Proof.
We now wish to show that h is preserves coproducts. We first
then apply the Lemma to the case where I = ∅ and so deduce
that h maps the initial object of X to that in Shv(C). Now fix
{Xi} ∈ obj(X ) with coproduct X, then wts that θ :

∐
hXi → hX

is an iso in C. Our Lemma says tells us that θ is an effective epi
and so it suffices to show that θ is too a mono, i.e.∐

hXi

δ−→ (
∐

hXi ×hX

∐
hhXj

)

is an iso. Recall now that Shv(C) satisfies (iv) and h is right
exact (finite colimit preserving) so we may rewrite
cod(δ) =

∐
i,j hXi×XXj . Thus we must show that hXi → hXi×XXj

are isos and hXi×XXj is an initial object of Shv(C), i ̸= j. These
follow from that fact that coproducts in X are disjoint by (iii)
and that h preserves monos.

The Final Step: [(3’) ⇒ (1’)](c)
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Proof.
Now we wish to show that h is essentially surjective. Select
F ∈ Shv(C); wts that F belongs to the essential image of h.
First, consider the case where F ⊆ hX for some X ∈ obj(X )
and pick effective epi

∐
hCi → F ,Ci ∈ C. Set U :=

∐
i Ci to

obtain an effective epi hU → F for some U ∈ X then
hU → F ↪→ hX arises from u ∈ HomX (U,X) and since X is a

pretopos u factors as U u′
−→ Y u′′

−→ X for effective epi u′ and

mono u′′. (Note for the induced maps: hU
u′
−→ hY is an effective

epi in Shv(C) by our Lemma and hY
u′′
−→ X is a mono in Shv(C)

as h is lex). As images are unique in a pretopos we conclude
that F ∼= hY.

Now suppose that F is any sheaf on C and again pick effective
epi hU → F ,U ∈ obj(X).

The Final Step: [(3’) ⇒ (1’)](c)
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Proof.
In this case, the fiber product hU ×F hU is a sheaf on C which
can be viewed as a subobject of hU × hU = hU×U. By the same
logic as before we can pick an iso hU ×F hU ∼= hR,R ∈ obj(X ).
Now consider the canonical bijection

∀Y ∈ obj(X ) ,HomX (Y,R) ∼= HomShv(C)(hY, hu ×F hU)

so we can view R as an equivalence relation on U in X .

Thus by (i) this equivalence relation is effective. That is, there
exists an effective epi U → X in X with R = U ×X U (as
subobjects of U × U). Therefore we apply our Lemma to the
covering {U → X} and finally obtain the isomorphism:

hX ∼= Coeq(hR ⇒ hU) ∼= Coeq(hU ×F hU ⇒ hU) ∼= F .

The Final Step: [(3’) ⇒ (1’)](c)
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Thank You!



Definition
An Equivalence Relation is a relation R of X ∈ obj(X )
satisfying the following conditions:

Reflectivity: R X

X × X

Symmetry: R R R R

X X

Transitivity: R × R R

R X

∃

∆m

d0

∃s

d1

∃s

d1
d0

d0

d1
⌟

And note if X admits colimits then we could construct the
equalizer, q of d0, d1.

Appendix I
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Definition
A Pretopos is a category C satisfying the following conditions:

• C admits finite limits.
• Every equivalence relation in C is effective.
• C admits finite coproducts, and coproducts are disjoint.
• The collection of effective epimorphisms in C is closed

under pullbacks.
• Finite coproducts in C are preserved by pullback.

This is to say that C is exact (regular and every congruence pair
is a kernel) and extensive (coprods work well with pullback).

Appendix II
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